Suppr超能文献

基于语义分割的具有挑战性的冷冻电子显微镜核糖核蛋白(RNP)样本检测算法。

Semantic segmentation-based detection algorithm for challenging cryo-electron microscopy RNP samples.

作者信息

Vargas J, Modrego A, Canabal H, Martin-Benito J

机构信息

Departamento de Óptica, Universidad Complutense de Madrid, Madrid, Spain.

Department of Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain.

出版信息

Front Mol Biosci. 2024 Oct 1;11:1473609. doi: 10.3389/fmolb.2024.1473609. eCollection 2024.

Abstract

In this study, we present a novel and robust methodology for the automatic detection of influenza A virus ribonucleoproteins (RNPs) in single-particle cryo-electron microscopy (cryo-EM) images. Utilizing a U-net architecture-a type of convolutional neural network renowned for its efficiency in biomedical image segmentation-our approach is based on a pretraining phase with a dataset annotated through visual inspection. This dataset facilitates the precise identification of filamentous RNPs, including the localization of the filaments and their terminal coordinates. A key feature of our method is the application of semantic segmentation techniques, enabling the automated categorization of micrograph pixels into distinct classifications of particle and background. This deep learning strategy allows to robustly detect these intricate particles, a crucial step in achieving high-resolution reconstructions in cryo-EM studies. To encourage collaborative advancements in the field, we have made our routines, the pretrained U-net model, and the training dataset publicly accessible. The reproducibility and accessibility of these resources aim to facilitate further research and validation in the realm of cryo-EM image analysis.

摘要

在本研究中,我们提出了一种新颖且强大的方法,用于在单颗粒冷冻电子显微镜(cryo-EM)图像中自动检测甲型流感病毒核糖核蛋白(RNP)。我们的方法利用了U-net架构——一种以在生物医学图像分割中效率高而闻名的卷积神经网络——基于一个预训练阶段,该阶段使用通过目视检查注释的数据集。这个数据集有助于精确识别丝状RNP,包括细丝的定位及其末端坐标。我们方法的一个关键特征是应用语义分割技术,能够将显微照片像素自动分类为颗粒和背景的不同类别。这种深度学习策略能够稳健地检测这些复杂的颗粒,这是在冷冻电镜研究中实现高分辨率重建的关键一步。为了鼓励该领域的合作进展,我们已将我们的程序、预训练的U-net模型和训练数据集公开提供。这些资源的可重复性和可获取性旨在促进冷冻电镜图像分析领域的进一步研究和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91d3/11473350/b743a22d3a2a/fmolb-11-1473609-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验