文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射学中可解释且安全的人工智能

[Explainable & Safe Artificial Intelligence in Radiology].

作者信息

Do Synho

出版信息

J Korean Soc Radiol. 2024 Sep;85(5):834-847. doi: 10.3348/jksr.2024.0118. Epub 2024 Sep 27.


DOI:10.3348/jksr.2024.0118
PMID:39416324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11473981/
Abstract

Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.

摘要

人工智能(AI)正在通过提高诊断准确性和效率来改变放射学,但预测不确定性仍然是一个关键挑战。本综述探讨了不确定性的关键来源——分布外、偶然和模型不确定性——并强调了独立置信度指标和可解释人工智能对于安全整合的重要性。独立置信度指标评估人工智能预测的可靠性,而可解释人工智能提供透明度,增强人工智能与放射科医生之间的协作。旨在将错误降至最低的零误差容忍模型的开发为安全性设定了新标准。应对这些挑战将使人工智能成为放射学中值得信赖的合作伙伴,提高护理标准和患者治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46d/11473981/9984bf7934d2/jksr-85-834-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46d/11473981/9984bf7934d2/jksr-85-834-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46d/11473981/9984bf7934d2/jksr-85-834-g001.jpg

相似文献

[1]
[Explainable & Safe Artificial Intelligence in Radiology].

J Korean Soc Radiol. 2024-9

[2]
Revolutionizing Radiology With Artificial Intelligence.

Cureus. 2024-10-29

[3]
Smart Vision Transparency: Efficient Ocular Disease Prediction Model Using Explainable Artificial Intelligence.

Sensors (Basel). 2024-10-14

[4]
The need for balancing 'black box' systems and explainable artificial intelligence: A necessary implementation in radiology.

Eur J Radiol. 2025-4

[5]
Pitfalls in Interpretive Applications of Artificial Intelligence in Radiology.

AJR Am J Roentgenol. 2024-10

[6]
Cultivating diagnostic clarity: The importance of reporting artificial intelligence confidence levels in radiologic diagnoses.

Clin Imaging. 2025-1

[7]
A literature review of artificial intelligence (AI) for medical image segmentation: from AI and explainable AI to trustworthy AI.

Quant Imaging Med Surg. 2024-12-5

[8]
Artificial intelligence in hospital infection prevention: an integrative review.

Front Public Health. 2025-4-2

[9]
Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care.

J Clin Med. 2025-4-16

[10]
The augmented radiologist: artificial intelligence in the practice of radiology.

Pediatr Radiol. 2022-10

本文引用的文献

[1]
Incorporating algorithmic uncertainty into a clinical machine deep learning algorithm for urgent head CTs.

PLoS One. 2023

[2]
Tackling prediction uncertainty in machine learning for healthcare.

Nat Biomed Eng. 2023-6

[3]
Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach.

Sci Rep. 2022-12-7

[4]
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model.

Nat Commun. 2022-4-6

[5]
Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation.

IEEE Trans Med Imaging. 2022-6

[6]
Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond.

Inf Fusion. 2022-1

[7]
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

Radiol Artif Intell. 2021-10-6

[8]
Errors, discrepancies and underlying bias in radiology with case examples: a pictorial review.

Insights Imaging. 2021-4-20

[9]
Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.

J Med Ethics. 2021-3-18

[10]
Assessment of the Robustness of Convolutional Neural Networks in Labeling Noise by Using Chest X-Ray Images From Multiple Centers.

JMIR Med Inform. 2020-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索