Do Synho
J Korean Soc Radiol. 2024 Sep;85(5):834-847. doi: 10.3348/jksr.2024.0118. Epub 2024 Sep 27.
Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty-out-of-distribution, aleatoric, and model uncertainties-and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.
人工智能(AI)正在通过提高诊断准确性和效率来改变放射学,但预测不确定性仍然是一个关键挑战。本综述探讨了不确定性的关键来源——分布外、偶然和模型不确定性——并强调了独立置信度指标和可解释人工智能对于安全整合的重要性。独立置信度指标评估人工智能预测的可靠性,而可解释人工智能提供透明度,增强人工智能与放射科医生之间的协作。旨在将错误降至最低的零误差容忍模型的开发为安全性设定了新标准。应对这些挑战将使人工智能成为放射学中值得信赖的合作伙伴,提高护理标准和患者治疗效果。
J Korean Soc Radiol. 2024-9
Cureus. 2024-10-29
AJR Am J Roentgenol. 2024-10
Quant Imaging Med Surg. 2024-12-5
Front Public Health. 2025-4-2
Pediatr Radiol. 2022-10
Nat Biomed Eng. 2023-6
IEEE Trans Med Imaging. 2022-6
Radiol Artif Intell. 2021-10-6
Insights Imaging. 2021-4-20