Azmat Muhammad Abubakkar, Zaheer Malaika, Shaban Muhammad, Arshad Saman, Hasan Muhammad, Ashraf Alyan, Naeem Muhammad, Ahmad Aftab, Munawar Nayla
Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan.
Department of Agricultural Biotechnology, Ondokuz Mayis University, Samsun 55270, Turkey.
Scientifica (Cairo). 2024 Oct 12;2024:9908323. doi: 10.1155/2024/9908323. eCollection 2024.
Autophagy is a preserved process in eukaryotes that allows large material degeneration and nutrient recovery via vacuoles or lysosomes in cytoplasm. Autophagy starts from the moment of induction during the formation of a phagophore. Degradation may occur in the autophagosomes even without fusion with lysosome or vacuole, particularly in microautophagosomes. This process is arbitrated by the conserved machinery of basic autophagy-related genes (ATGs). In selective autophagy, specific materials are recruited by autophagosomes via receptors. Selective autophagy targets a vast variety of cellular components for degradation, i.e., old or damaged organelles, aggregates, and inactive or misfolded proteins. In optimal conditions, autophagy in plants ensures cellular homeostasis, proper plant growth, and fitness. Moreover, autophagy is essential during stress responses in plants and aids in survival of plants. Several biotic and abiotic stresses, i.e., pathogen infection, nutrient deficiency, plant senescence, heat stress, drought, osmotic stress, and hypoxia induce autophagy in plants. Cell death is not a stress, which induces autophagy but in contrast, sometimes it is a consequence of autophagy. In this way, autophagy plays a vital role in plant survival during harsh environmental conditions by maintaining nutrient concentration through elimination of useless cellular components. This review discussed the recent advances regarding regulatory functions of autophagy under normal and stressful conditions in plants and suggests future prospects in mitigating climate change. Autophagy in plants offers a viable way to increase plant resilience to climate change by increasing stress tolerance and nutrient usage efficiency.
自噬是真核生物中一个保守的过程,它允许通过细胞质中的液泡或溶酶体进行大分子物质的降解和营养回收。自噬从吞噬泡形成过程中的诱导阶段开始。即使没有与溶酶体或液泡融合,自噬体中也可能发生降解,特别是在微自噬体中。这个过程由基本自噬相关基因(ATG)的保守机制调控。在选择性自噬中,特定物质通过受体被自噬体招募。选择性自噬针对多种细胞成分进行降解,即衰老或受损的细胞器、聚集体以及无活性或错误折叠的蛋白质。在最佳条件下,植物中的自噬确保细胞内稳态、植物的正常生长和适应性。此外,自噬在植物的应激反应中至关重要,有助于植物存活。几种生物和非生物胁迫,即病原体感染、营养缺乏、植物衰老、热胁迫、干旱、渗透胁迫和缺氧,都会诱导植物自噬。细胞死亡不是诱导自噬的胁迫,相反,有时它是自噬的结果。通过这种方式,自噬在恶劣环境条件下通过清除无用的细胞成分来维持营养浓度,从而在植物存活中发挥重要作用。本文综述了植物在正常和胁迫条件下自噬调控功能的最新进展,并提出了缓解气候变化的未来前景。植物中的自噬通过提高胁迫耐受性和营养利用效率,为提高植物对气候变化的适应能力提供了一条可行的途径。