Theocharopoulos Panagiotis C, Bersimis Sotiris, Georgakopoulos Spiros V, Karaminas Antonis, Tasoulis Sotiris K, Plagianakos Vassilis P
Deparement of Computer Science & Biomedical Informatics, University of Thessaly, Lamia, Greece.
Covariance P.C., Athens, Greece.
J Appl Stat. 2024 Feb 13;51(14):2980-3003. doi: 10.1080/02664763.2024.2315451. eCollection 2024.
Computational Medicine encompasses the application of Statistical Machine Learning and Artificial Intelligence methods on several traditional medical approaches, including biochemical testing which is extremely valuable both for early disease prognosis and long-term individual monitoring, as it can provide important information about a person's health status. However, using Statistical Machine Learning and Artificial Intelligence algorithms to analyze biochemical test data from Electronic Health Records requires several preparatory steps, such as data manipulation and standardization. This study presents a novel approach for utilizing Electronic Health Records from large, real-world databases to develop predictive precision medicine models by exploiting Artificial Intelligence. Furthermore, to demonstrate the effectiveness of this approach, we compare the performance of various traditional Statistical Machine Learning and Deep Learning algorithms in predicting individuals' future biochemical test outcomes. Specifically, using data from a large real-world database, we exploit a longitudinal format of the data in order to predict the future values of 15 biochemical tests and identify individuals at high risk. The proposed approach and the extensive model comparison contribute to the personalized approach that modern medicine aims to achieve.
计算医学涵盖了统计机器学习和人工智能方法在多种传统医学方法中的应用,包括生化检测,生化检测对于疾病早期预后和长期个体监测都极为重要,因为它可以提供有关个人健康状况的重要信息。然而,使用统计机器学习和人工智能算法来分析电子健康记录中的生化检测数据需要几个准备步骤,例如数据处理和标准化。本研究提出了一种新颖的方法,通过利用人工智能,从大型真实世界数据库中利用电子健康记录来开发预测性精准医学模型。此外,为了证明这种方法的有效性,我们比较了各种传统统计机器学习和深度学习算法在预测个体未来生化检测结果方面的性能。具体而言,我们使用来自大型真实世界数据库的数据,采用数据的纵向格式来预测15种生化检测的未来值,并识别高危个体。所提出的方法和广泛的模型比较有助于实现现代医学旨在达成的个性化方法。