文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于创伤性脑损伤患者的磁敏感加权图像的分割实现脑微出血的自动检测。

Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury.

机构信息

Radboudumc, Departmentof Radiology and Nuclear Medicine, Nijmegen, The Netherlands.

Erasmus MC, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands.

出版信息

Neuroimage Clin. 2022;35:103027. doi: 10.1016/j.nicl.2022.103027. Epub 2022 Apr 28.


DOI:10.1016/j.nicl.2022.103027
PMID:35597029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9127224/
Abstract

Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain injury (TBI). Accurate detection of CMBs is necessary for both research and clinical applications. CMBs appear as small hypointense lesions on susceptibility-weighted magnetic resonance imaging (SWI). Their size and shape vary markedly in cases of TBI. Manual annotation of CMBs is a difficult, error-prone, and time-consuming task. Several studies addressed the detection of CMBs in other neuropathologies with convolutional neural networks (CNNs). In this study, we developed and contrasted a classification (Patch-CNN) and two segmentation (Segmentation-CNN, U-Net) approaches for the detection of CMBs in TBI cases. The models were trained using 45 datasets, and the best models were chosen according to 16 validation sets. Finally, the models were evaluated on 10 TBI and healthy control cases, respectively. Our three models outperform the current status quo in the detection of traumatic CMBs, achieving higher sensitivity at low false positive (FP) counts. Furthermore, using a segmentation approach allows for better precision. The best model, the U-Net, achieves a detection rate of 90% at FP counts of 17.1 in TBI patients and 3.4 in healthy controls.

摘要

脑微出血 (CMBs) 是创伤性轴索损伤 (TAI) 的公认生物标志物。它们的数量和位置为创伤性脑损伤 (TBI) 患者的长期预后提供了有价值的信息。准确检测 CMBs 对于研究和临床应用都很必要。CMBs 在磁敏感加权成像 (SWI) 上表现为小的低信号病灶。在 TBI 病例中,它们的大小和形状差异很大。CMBs 的手动标注是一项困难、容易出错且耗时的任务。几项研究使用卷积神经网络 (CNNs) 解决了其他神经病理学中 CMBs 的检测问题。在这项研究中,我们开发并对比了分类 (Patch-CNN) 和两种分割 (Segmentation-CNN、U-Net) 方法,用于检测 TBI 病例中的 CMBs。模型使用 45 个数据集进行训练,并根据 16 个验证集选择最佳模型。最后,分别在 10 个 TBI 和健康对照组中评估了模型。我们的三个模型在创伤性 CMBs 的检测方面优于当前的现状,在低假阳性 (FP) 计数下实现了更高的敏感性。此外,使用分割方法可以提高精度。最佳模型 U-Net 在 TBI 患者的 FP 计数为 17.1 时和健康对照组的 FP 计数为 3.4 时,检测率分别达到了 90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/040e06e38ad5/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/7613fa92c9d1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/9708bbd53b79/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/9df64a799524/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/3db3777c16d5/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/cc9ce23bb84d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/040e06e38ad5/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/7613fa92c9d1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/9708bbd53b79/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/9df64a799524/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/3db3777c16d5/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/cc9ce23bb84d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/453b/9127224/040e06e38ad5/gr6.jpg

相似文献

[1]
Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury.

Neuroimage Clin. 2022

[2]
Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury.

Neuroimage Clin. 2016-7-2

[3]
Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.

Neuroimage. 2019-5-20

[4]
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.

Neuroimage Clin. 2020

[5]
Detection of Cerebral Microbleeds in MR Images Using a Single-Stage Triplanar Ensemble Detection Network (TPE-Det).

J Magn Reson Imaging. 2023-7

[6]
DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI.

Sci Rep. 2021-7-8

[7]
Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain.

Neurobiol Aging. 2018-3-6

[8]
CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.

Comput Biol Med. 2022-12

[9]
Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks.

IEEE Trans Med Imaging. 2016-2-11

[10]
A Two Cascaded Network Integrating Regional-based YOLO and 3D-CNN for Cerebral Microbleeds Detection.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

引用本文的文献

[1]
Artificial intelligence in traumatic brain injury: Brain imaging analysis and outcome prediction: A mini review.

World J Crit Care Med. 2025-9-9

[2]
Deep learning in neurosurgery: a systematic literature review with a structured analysis of applications across subspecialties.

Front Neurol. 2025-4-16

[3]
A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language.

Bioengineering (Basel). 2024-9-30

[4]
Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function.

AJNR Am J Neuroradiol. 2025-5-2

[5]
The prognostic importance of traumatic axonal injury on early MRI: the Trondheim TAI-MRI grading and quantitative models.

Eur Radiol. 2024-12

[6]
Clinical considerations in early-onset cerebral amyloid angiopathy.

Brain. 2023-10-3

[7]
Cerebral amyloid angiopathy-related cardiac injury: Focus on cardiac cell death.

Front Cell Dev Biol. 2023-2-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索