Radboudumc, Departmentof Radiology and Nuclear Medicine, Nijmegen, The Netherlands.
Erasmus MC, Department of Radiology and Nuclear Medicine, Rotterdam, The Netherlands.
Neuroimage Clin. 2022;35:103027. doi: 10.1016/j.nicl.2022.103027. Epub 2022 Apr 28.
Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain injury (TBI). Accurate detection of CMBs is necessary for both research and clinical applications. CMBs appear as small hypointense lesions on susceptibility-weighted magnetic resonance imaging (SWI). Their size and shape vary markedly in cases of TBI. Manual annotation of CMBs is a difficult, error-prone, and time-consuming task. Several studies addressed the detection of CMBs in other neuropathologies with convolutional neural networks (CNNs). In this study, we developed and contrasted a classification (Patch-CNN) and two segmentation (Segmentation-CNN, U-Net) approaches for the detection of CMBs in TBI cases. The models were trained using 45 datasets, and the best models were chosen according to 16 validation sets. Finally, the models were evaluated on 10 TBI and healthy control cases, respectively. Our three models outperform the current status quo in the detection of traumatic CMBs, achieving higher sensitivity at low false positive (FP) counts. Furthermore, using a segmentation approach allows for better precision. The best model, the U-Net, achieves a detection rate of 90% at FP counts of 17.1 in TBI patients and 3.4 in healthy controls.
脑微出血 (CMBs) 是创伤性轴索损伤 (TAI) 的公认生物标志物。它们的数量和位置为创伤性脑损伤 (TBI) 患者的长期预后提供了有价值的信息。准确检测 CMBs 对于研究和临床应用都很必要。CMBs 在磁敏感加权成像 (SWI) 上表现为小的低信号病灶。在 TBI 病例中,它们的大小和形状差异很大。CMBs 的手动标注是一项困难、容易出错且耗时的任务。几项研究使用卷积神经网络 (CNNs) 解决了其他神经病理学中 CMBs 的检测问题。在这项研究中,我们开发并对比了分类 (Patch-CNN) 和两种分割 (Segmentation-CNN、U-Net) 方法,用于检测 TBI 病例中的 CMBs。模型使用 45 个数据集进行训练,并根据 16 个验证集选择最佳模型。最后,分别在 10 个 TBI 和健康对照组中评估了模型。我们的三个模型在创伤性 CMBs 的检测方面优于当前的现状,在低假阳性 (FP) 计数下实现了更高的敏感性。此外,使用分割方法可以提高精度。最佳模型 U-Net 在 TBI 患者的 FP 计数为 17.1 时和健康对照组的 FP 计数为 3.4 时,检测率分别达到了 90%。
Neuroimage Clin. 2016-7-2
Neurobiol Aging. 2018-3-6
Comput Biol Med. 2022-12
IEEE Trans Med Imaging. 2016-2-11
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
World J Crit Care Med. 2025-9-9
Bioengineering (Basel). 2024-9-30
Front Cell Dev Biol. 2023-2-24