Suppr超能文献

肠道宏基因组衍生的图像增强和深度学习提高代谢疾病分类预测准确性。

Gut metagenome-derived image augmentation and deep learning improve prediction accuracy of metabolic disease classification.

机构信息

College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China.

出版信息

Yi Chuan. 2024 Oct;46(10):886-896. doi: 10.16288/j.yczz.24-086.

Abstract

In recent years, statistics and machine learning methods have been widely used to analyze the relationship between human gut microbial metagenome and metabolic diseases, which is of great significance for the functional annotation and development of microbial communities. In this study, we proposed a new and scalable framework for image enhancement and deep learning of gut metagenome, which could be used in the classification of human metabolic diseases. Each data sample in three representative human gut metagenome datasets was transformed into image and enhanced, and put into the machine learning models of logistic regression (LR), support vector machine (SVM), Bayesian network (BN) and random forest (RF), and the deep learning models of multilayer perceptron (MLP) and convolutional neural network (CNN). The accuracy performance of the overall evaluation model for disease prediction was verified by accuracy (A), accuracy (P), recall (R), F1 score (F1), area under ROC curve (AUC) and 10 fold cross-validation. The results showed that the overall performance of MLP model was better than that of CNN, LR, SVM, BN, RF and PopPhy-CNN, and the performance of MLP and CNN models was further improved after data enhancement (random rotation and adding salt-and-pepper noise). The accuracy of MLP model in disease prediction was further improved by 4%-11%, F1 by 1%-6% and AUC by 5%-10%. The above results showed that human gut metagenome image enhancement and deep learning could accurately extract microbial characteristics and effectively predict the host disease phenotype. The source code and datasets used in this study can be publicly accessed in https://github.com/HuaXWu/GM_ML_Classification.git.

摘要

近年来,统计学和机器学习方法已广泛应用于分析人类肠道微生物宏基因组与代谢性疾病之间的关系,这对于微生物群落的功能注释和开发具有重要意义。本研究提出了一种新的、可扩展的肠道宏基因组图像增强和深度学习框架,可用于人类代谢性疾病的分类。在三个有代表性的人类肠道宏基因组数据集的每个数据样本中,将其转换为图像并进行增强,然后将其放入逻辑回归(LR)、支持向量机(SVM)、贝叶斯网络(BN)和随机森林(RF)等机器学习模型以及多层感知机(MLP)和卷积神经网络(CNN)等深度学习模型中。通过准确性(A)、准确性(P)、召回率(R)、F1 得分(F1)、ROC 曲线下面积(AUC)和 10 倍交叉验证对疾病预测的整体评估模型的准确性性能进行了验证。结果表明,MLP 模型的整体性能优于 CNN、LR、SVM、BN、RF 和 PopPhy-CNN,并且在数据增强(随机旋转和添加椒盐噪声)后,MLP 和 CNN 模型的性能进一步提高。MLP 模型在疾病预测中的准确性提高了 4%-11%,F1 值提高了 1%-6%,AUC 值提高了 5%-10%。以上结果表明,人类肠道宏基因组图像增强和深度学习可以准确提取微生物特征,有效预测宿主疾病表型。本研究中使用的源代码和数据集可在 https://github.com/HuaXWu/GM_ML_Classification.git 中公开访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验