Department of Radiology, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea.
ClariPi Inc, Seoul, Republic of Korea.
Sci Rep. 2024 Oct 23;14(1):25014. doi: 10.1038/s41598-024-73709-w.
This retrospective study examined the diagnostic efficacy of automated deep learning-based bone mineral density (DL-BMD) measurements for osteoporosis screening using 422 CT datasets from four vendors in two medical centers, encompassing 159 chest, 156 abdominal, and 107 lumbar spine datasets. DL-BMD values on L1 and L2 vertebral bodies were compared with manual BMD (m-BMD) measurements using Pearson's correlation and intraclass correlation coefficients. Strong agreement was found between m-BMD and DL-BMD in total CT scans (r = 0.953, p < 0.001). The diagnostic performance of DL-BMD was assessed using receiver operating characteristic analysis for osteoporosis and low BMD by dual-energy x-ray absorptiometry (DXA) and m-BMD. Compared to DXA, DL-BMD demonstrated an AUC of 0.790 (95% CI 0.733-0.839) for low BMD and 0.769 (95% CI 0.710-0.820) for osteoporosis, with sensitivity, specificity, and accuracy of 80.8% (95% CI 74.2-86.3%), 56.3% (95% CI 43.4-68.6%), and 74.3% (95% CI 68.3-79.7%) for low BMD and 65.4% (95% CI 50.9-78.0%), 70.9% (95% CI 63.8-77.3%), and 69.7% (95% CI 63.5-75.4%) for osteoporosis, respectively. Compared to m-BMD, DL-BMD showed an AUC of 0.983 (95% CI 0.973-0.993) for low BMD and 0.972 (95% CI 0.958-0.987) for osteoporosis, with sensitivity, specificity, and accuracy of 97.3% (95% CI 94.5-98.9%), 85.2% (95% CI 78.8-90.3%), and 92.7% (95% CI 89.7-95.0%) for low BMD and 94.4% (95% CI 88.3-97.9%), 89.5% (95% CI 85.6-92.7%), and 90.8% (95% CI 87.6-93.4%) for osteoporosis, respectively. The DL-based method can provide accurate and reliable BMD assessments across diverse CT protocols and scanners.
本回顾性研究使用来自两个医疗中心的四个供应商的 422 个 CT 数据集,检查了基于自动深度学习的骨密度(DL-BMD)测量在骨质疏松症筛查中的诊断效果,这些数据集包括 159 个胸部、156 个腹部和 107 个腰椎数据集。使用 Pearson 相关系数和组内相关系数比较了 L1 和 L2 椎体的 DL-BMD 值与手动 BMD(m-BMD)测量值。在总 CT 扫描中,m-BMD 和 DL-BMD 之间存在很强的一致性(r=0.953,p<0.001)。使用接收器操作特征分析(ROC 分析)评估了基于 DL-BMD 的骨质疏松症和双能 X 射线吸收法(DXA)和 m-BMD 低骨密度的诊断性能。与 DXA 相比,DL-BMD 对低骨密度的 AUC 为 0.790(95%CI 0.733-0.839),对骨质疏松症的 AUC 为 0.769(95%CI 0.710-0.820),低骨密度的敏感性、特异性和准确性分别为 80.8%(95%CI 74.2-86.3%)、56.3%(95%CI 43.4-68.6%)和 74.3%(95%CI 68.3-79.7%),骨质疏松症的敏感性、特异性和准确性分别为 65.4%(95%CI 50.9-78.0%)、70.9%(95%CI 63.8-77.3%)和 69.7%(95%CI 63.5-75.4%)。与 m-BMD 相比,DL-BMD 对低骨密度的 AUC 为 0.983(95%CI 0.973-0.993),对骨质疏松症的 AUC 为 0.972(95%CI 0.958-0.987),低骨密度的敏感性、特异性和准确性分别为 97.3%(95%CI 94.5-98.9%)、85.2%(95%CI 78.8-90.3%)和 92.7%(95%CI 89.7-95.0%),骨质疏松症的敏感性、特异性和准确性分别为 94.4%(95%CI 88.3-97.9%)、89.5%(95%CI 85.6-92.7%)和 90.8%(95%CI 87.6-93.4%)。基于深度学习的方法可以在不同的 CT 协议和扫描仪上提供准确可靠的 BMD 评估。