Suppr超能文献

基于 MobileNetV2 和 Swin Transformer 的袋装集成分类器的多标签口腔疾病诊断。

Multi-label dental disorder diagnosis based on MobileNetV2 and swin transformer using bagging ensemble classifier.

机构信息

Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.

Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.

出版信息

Sci Rep. 2024 Oct 24;14(1):25193. doi: 10.1038/s41598-024-73297-9.

Abstract

Dental disorders are common worldwide, causing pain or infections and limiting mouth opening, so dental conditions impact productivity, work capability, and quality of life. Manual detection and classification of oral diseases is time-consuming and requires dentists' evaluation and examination. The dental disease detection and classification system based on machine learning and deep learning will aid in early dental disease diagnosis. Hence, this paper proposes a new diagnosis system for dental diseases using X-ray imaging. The framework includes a robust pre-processing phase that uses image normalization and adaptive histogram equalization to improve image quality and reduce variation. A dual-stream approach is used for feature extraction, utilizing the advantages of Swin Transformer for capturing long-range dependencies and global context and MobileNetV2 for effective local feature extraction. A thorough representation of dental anomalies is produced by fusing the extracted features. To obtain reliable and broadly applicable classification results, a bagging ensemble classifier is utilized in the end. We evaluate our model on a benchmark dental radiography dataset. The experimental results and comparisons show the superiority of the proposed system with 95.7% for precision, 95.4% for sensitivity, 95.7% for specificity, 95.5% for Dice similarity coefficient, and 95.6% for accuracy. The results demonstrate the effectiveness of our hybrid model integrating MoileNetv2 and Swin Transformer architectures, outperforming state-of-the-art techniques in classifying dental diseases using dental panoramic X-ray imaging. This framework presents a promising method for robustly and accurately diagnosing dental diseases automatically, which may help dentists plan treatments and identify dental diseases early on.

摘要

口腔疾病在全球范围内很常见,会引起疼痛或感染,并限制口腔张开,因此口腔状况会影响生产力、工作能力和生活质量。手动检测和分类口腔疾病既耗时又需要牙医进行评估和检查。基于机器学习和深度学习的口腔疾病检测和分类系统将有助于早期口腔疾病的诊断。因此,本文提出了一种使用 X 射线成像的口腔疾病新诊断系统。该框架包括一个强大的预处理阶段,使用图像归一化和自适应直方图均衡化来提高图像质量和减少变化。该框架采用双流方法进行特征提取,利用 Swin Transformer 捕捉长距离依赖关系和全局上下文的优势,以及 MobileNetV2 进行有效的局部特征提取。通过融合提取的特征来生成对口腔异常的全面表示。为了获得可靠且广泛适用的分类结果,最终使用了袋装集成分类器。我们在基准口腔射线照相数据集上评估了我们的模型。实验结果和比较表明,所提出的系统具有 95.7%的精度、95.4%的灵敏度、95.7%的特异性、95.5%的 Dice 相似系数和 95.6%的准确性,具有优越性。结果表明,我们的混合模型集成了 MobileNetv2 和 Swin Transformer 架构,在使用口腔全景 X 射线成像对口腔疾病进行分类方面优于最先进的技术。该框架为自动、稳健和准确地诊断口腔疾病提供了一种有前途的方法,这可能有助于牙医进行治疗计划并早期识别口腔疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf35/11502688/66219a0652f8/41598_2024_73297_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验