Suppr超能文献

口腔牙科疾病早期诊断的牙科图像增强网络。

Dental image enhancement network for early diagnosis of oral dental disease.

机构信息

Department of Computer Science and Mathematics, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.

School of Computer Science, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Sci Rep. 2023 Mar 31;13(1):5312. doi: 10.1038/s41598-023-30548-5.

Abstract

Intelligent robotics and expert system applications in dentistry suffer from identification and detection problems due to the non-uniform brightness and low contrast in the captured images. Moreover, during the diagnostic process, exposure of sensitive facial parts to ionizing radiations (e.g., X-Rays) has several disadvantages and provides a limited angle for the view of vision. Capturing high-quality medical images with advanced digital devices is challenging, and processing these images distorts the contrast and visual quality. It curtails the performance of potential intelligent and expert systems and disincentives the early diagnosis of oral and dental diseases. The traditional enhancement methods are designed for specific conditions, and network-based methods rely on large-scale datasets with limited adaptability towards varying conditions. This paper proposed a novel and adaptive dental image enhancement strategy based on a small dataset and proposed a paired branch Denticle-Edification network (Ded-Net). The input dental images are decomposed into reflection and illumination in a multilayer Denticle network (De-Net). The subsequent enhancement operations are performed to remove the hidden degradation of reflection and illumination. The adaptive illumination consistency is maintained through the Edification network (Ed-Net). The network is regularized following the decomposition congruity of the input data and provides user-specific freedom of adaptability towards desired contrast levels. The experimental results demonstrate that the proposed method improves visibility and contrast and preserves the edges and boundaries of the low-contrast input images. It proves that the proposed method is suitable for intelligent and expert system applications for future dental imaging.

摘要

智能机器人和专家系统在牙科领域的应用受到捕获图像亮度不均匀和对比度低的识别和检测问题的困扰。此外,在诊断过程中,将敏感的面部暴露在电离辐射(例如 X 射线)下有几个缺点,并且为视力提供的视角有限。使用先进的数字设备捕捉高质量的医学图像具有挑战性,并且处理这些图像会使对比度和视觉质量失真。这会降低潜在智能和专家系统的性能,并阻碍口腔和牙齿疾病的早期诊断。传统的增强方法是针对特定条件设计的,而基于网络的方法依赖于具有有限适应性的大规模数据集,以适应不同的条件。本文提出了一种基于小数据集的新颖自适应牙科图像增强策略,并提出了一种成对分支 Denticle-Edification 网络(Ded-Net)。输入的牙科图像在多层 Denticle 网络(De-Net)中分解为反射和照明。随后进行增强操作,以消除反射和照明的隐藏退化。自适应光照一致性通过 Edification 网络(Ed-Net)保持。该网络遵循输入数据的分解一致性进行正则化,并为用户提供针对所需对比度水平的特定适应性自由。实验结果表明,所提出的方法提高了低对比度输入图像的可见度和对比度,并保留了边缘和边界。这证明了该方法适用于未来牙科成像的智能和专家系统应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57d4/10066200/7f200edd86c6/41598_2023_30548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验