Suppr超能文献

受植物启发的无铰链气动执行器的设计与演示

Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants.

作者信息

Zeng Xiangli, Wang Yingzhe, Morishima Keisuke

机构信息

Department of Mechanical Engineering, Osaka University, Osaka 565-0871, Japan.

出版信息

Biomimetics (Basel). 2024 Oct 1;9(10):597. doi: 10.3390/biomimetics9100597.

Abstract

Soft robots have often been proposed for medical applications, creating human-friendly machines, and dedicated subject operation, and the pneumatic actuator is a representative example of such a robot. Plants, with their hingeless architecture, can take advantage of morphology to achieve a predetermined deformation. To improve the modes of motion, two pneumatic actuators that mimic the principles of the plants (the birds-of-paradise plant and the waterwheel plant) were designed, simulated, and tested using physical models in this study. The most common deformation pattern of the pneumatic actuator, bending deformation, was utilized and hingeless structures based on the plants were fabricated for a more complex motion of the lobes. Here, an ABP (actuator inspired by the birds-of-paradise plant) could bend its midrib downward to open the lobes, but an AWP (actuator inspired by the waterwheel plant) could bend its midrib upward to open the two lobes. In both the computational and physical models, the associated movements of the midrib and lobes could be observed and measured. As it lacks multiple parts that have to be assembled using joints, the actuator would be simpler to fabricate, have a variety of deformation modes, and be applicable in more fields.

摘要

软机器人经常被提议用于医疗应用、制造对人类友好的机器以及进行专门的主体操作,而气动执行器就是这类机器人的一个典型例子。植物具有无铰链结构,能够利用其形态实现预定的变形。为了改进运动模式,本研究设计、模拟并使用物理模型测试了两种模仿植物(鹤望兰和水车草)原理的气动执行器。气动执行器最常见的变形模式即弯曲变形被加以利用,并制造了基于植物的无铰链结构,以使叶片实现更复杂的运动。在此,一种受鹤望兰启发的执行器(ABP)能够向下弯曲其叶脉以打开叶片,但一种受水车草启发的执行器(AWP)能够向上弯曲其叶脉以打开两个叶片。在计算模型和物理模型中,都能够观察和测量叶脉和叶片的相关运动。由于该执行器缺少必须使用关节进行组装的多个部件,所以其制造会更简单,具有多种变形模式,并且适用于更多领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19e/11506502/34a46f7d484b/biomimetics-09-00597-g001.jpg

相似文献

1
Design and Demonstration of Hingeless Pneumatic Actuators Inspired by Plants.
Biomimetics (Basel). 2024 Oct 1;9(10):597. doi: 10.3390/biomimetics9100597.
2
Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications.
Soft Robot. 2023 Aug;10(4):737-748. doi: 10.1089/soro.2021.0199. Epub 2023 Feb 23.
3
Special section on biomimetics of movement.
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.
5
Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots.
Soft Robot. 2018 Oct;5(5):567-575. doi: 10.1089/soro.2017.0090. Epub 2018 Jun 20.
6
Tunable Folding Assembly Strategy for Soft Pneumatic Actuators.
Soft Robot. 2023 Dec;10(6):1099-1114. doi: 10.1089/soro.2022.0166. Epub 2023 Jul 12.
7
Design, Modeling, and Application of Reinforced-Airbag-Based Pneumatic Actuators with High Load and Cellular Rearrangement.
Soft Robot. 2023 Dec;10(6):1083-1098. doi: 10.1089/soro.2022.0062. Epub 2023 May 4.
8
Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator.
Appl Bionics Biomech. 2021 Feb 17;2021:6623059. doi: 10.1155/2021/6623059. eCollection 2021.
9
A Comparison of Pneumatic Actuators for Soft Growing Vine Robots.
Soft Robot. 2024 Oct;11(5):857-868. doi: 10.1089/soro.2023.0169. Epub 2024 May 7.
10
Integrated Design and Fabrication of Pneumatic Soft Robot Actuators in a Single Casting Step.
Cyborg Bionic Syst. 2024 Jul 17;5:0137. doi: 10.34133/cbsystems.0137. eCollection 2024.

本文引用的文献

1
Learning robust autonomous navigation and locomotion for wheeled-legged robots.
Sci Robot. 2024 Apr 24;9(89):eadi9641. doi: 10.1126/scirobotics.adi9641.
2
Octopus-inspired sensorized soft arm for environmental interaction.
Sci Robot. 2023 Nov 22;8(84):eadh7852. doi: 10.1126/scirobotics.adh7852. Epub 2023 Nov 29.
4
The mechanics of plant morphogenesis.
Science. 2023 Feb 3;379(6631):eade8055. doi: 10.1126/science.ade8055.
5
Soft robotic origami crawler.
Sci Adv. 2022 Apr;8(13):eabm7834. doi: 10.1126/sciadv.abm7834. Epub 2022 Mar 30.
6
BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
Sci Robot. 2022 Mar 16;7(64):eabg4055. doi: 10.1126/scirobotics.abg4055.
7
Anguilliform Swimming Performance of an Eel-Inspired Soft Robot.
Soft Robot. 2022 Jun;9(3):425-439. doi: 10.1089/soro.2020.0093. Epub 2021 Jun 16.
8
Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.
Sci Robot. 2021 Jan 13;6(50). doi: 10.1126/scirobotics.abd8668.
9
Miniaturization of robots that fly on beetles' wings.
Science. 2020 Dec 4;370(6521):1165. doi: 10.1126/science.abf1925.
10
3D Printing Materials for Soft Robotics.
Adv Mater. 2021 May;33(19):e2003387. doi: 10.1002/adma.202003387. Epub 2020 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验