Suppr超能文献

用于光抑制双光子光刻的浸入式光刻胶,以实现晶圆上的高精度直接激光写入

Dip-In Photoresist for Photoinhibited Two-Photon Lithography to Realize High-Precision Direct Laser Writing on Wafer.

作者信息

Cao Chun, Qiu Yiwei, Guan Lingling, Wei Zhen, Yang Zhenyao, Zhan Lanxin, Zhu Dazhao, Ding Chenliang, Shen Xiaoming, Xia Xianmeng, Kuang Cuifang, Liu Xu

机构信息

Research Center for Intelligent Chips and Devices, Zhejiang Lab, Hangzhou 311121, China.

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 13;14(27):31332-31342. doi: 10.1021/acsami.2c08063. Epub 2022 Jul 4.

Abstract

For decades, photoinhibited two-photon lithography (PI-TPL) has been continually developed and applied into versatile nanofabrication. However, ultrahigh precision fabrication on wafer by PI-TPL remains challenging, due to the lack of a refractive index () matched photoresist (Rim-P) with effective photoinhibition capacity for dip-in mode. In this paper, various Rim-P are developed and then screened for their applications in PI-TPL. In addition, different lithography methods (in terms of oil-mode and dip-in mode) are analyzed by use of optical simulations combined with experiments. Remarkably, one type of Rim-P ( = 1.518) shows effective photoinhibition capacity, which represents an outstanding breakthrough in the field of PI-TPL. In contrast to photoresist with an unsuitable refractive index, optical aberrations are almost completely eliminated in the dip-in mode by using the Rim-P. Consequently, features with a minimum critical dimension as small as 39 nm are successfully achieved on wafer by dip-in PI-TPL, which paves the way for subdiffraction silicon-based chip manufacturing by PI-TPL. Moreover, through a combination of the Rim-P and dip-in mode, the ability to achieve tall and high-precision three-dimensional nanostructures is no longer problematic.

摘要

几十年来,光抑制双光子光刻(PI-TPL)技术不断发展,并应用于多种纳米制造领域。然而,由于缺乏具有有效光抑制能力的、与折射率()匹配的浸入式光刻胶(Rim-P),通过PI-TPL在晶圆上进行超高精度制造仍然具有挑战性。在本文中,开发了各种Rim-P,并对其在PI-TPL中的应用进行了筛选。此外,通过光学模拟结合实验,分析了不同的光刻方法(油浸模式和浸入模式)。值得注意的是,一种类型的Rim-P(=1.518)表现出有效的光抑制能力,这代表了PI-TPL领域的一项杰出突破。与折射率不合适的光刻胶相比,使用Rim-P在浸入模式下几乎完全消除了光学像差。因此,通过浸入式PI-TPL在晶圆上成功实现了最小临界尺寸低至39nm的特征,这为通过PI-TPL制造亚衍射硅基芯片铺平了道路。此外,通过将Rim-P与浸入模式相结合,实现高大且高精度的三维纳米结构的能力不再有问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验