Suppr超能文献

通过SrTiO缓冲层在云母衬底上实现柔性BiFeO铁电存储器性能的增强。

Enhanced performance of flexible BiFeO ferroelectric memory with Mica substrate via SrTiO buffer layer.

作者信息

Liu Xingpeng, Peng Yiming, Zhang Fabi, Sun Tangyou, Peng Ying, Wen Lei, Li Haiou

机构信息

Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin, 541004, China.

The 10th Research Institute of CETC, Chengdu, 610036, China.

出版信息

Sci Rep. 2024 Oct 25;14(1):25292. doi: 10.1038/s41598-024-77119-w.

Abstract

BiFeO (BFO) application in flexible wearable devices is garnering interest because of its unique ferroelectric and magnetic properties. However, the integration of high-quality BFO films onto flexible substrates presents significant technical challenges. Here, we successfully fabricated high-quality BFO films on mica substrates by using pulsed laser deposition, and report the fatigue characteristics of BFO films on flexible substrates for the first time. The results demonstrated that, after 10 bipolar switching cycles, the polarization only degraded by 0.28%, indicating superior fatigue characteristics compared to previously reported BFO films. Additionally, the device ferroelectric properties remained largely unchanged, with a bending radius of 3.5 mm. The fabricated flexible Pt/BFO/LaSrMnO(LSMO)/SrTiO(STO)/mica non-volatile memory devices exhibited mechanical flexibility and fatigue resistance. These findings not only highlight the potential of flexible BFO films for wearable electronic devices and flexible memory devices, they also provide valuable insight for the future development of high-performance flexible ferroelectric materials.

摘要

由于其独特的铁电和磁性特性,BiFeO(BFO)在柔性可穿戴设备中的应用正引起人们的兴趣。然而,将高质量的BFO薄膜集成到柔性基板上存在重大技术挑战。在此,我们通过脉冲激光沉积在云母基板上成功制备了高质量的BFO薄膜,并首次报道了柔性基板上BFO薄膜的疲劳特性。结果表明,在10个双极开关周期后,极化仅下降了0.28%,与先前报道的BFO薄膜相比,显示出优异的疲劳特性。此外,在弯曲半径为3.5毫米的情况下,器件的铁电性能基本保持不变。所制备的柔性Pt/BFO/LaSrMnO(LSMO)/SrTiO(STO)/云母非易失性存储器件表现出机械柔韧性和抗疲劳性。这些发现不仅突出了柔性BFO薄膜在可穿戴电子设备和柔性存储器件方面的潜力,也为高性能柔性铁电材料的未来发展提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4322/11511996/a19fc730fa6f/41598_2024_77119_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验