Suppr超能文献

使用L-Net增强脑肿瘤诊断:一种用于MRI图像分割和分类的新型深度学习方法

Enhancing Brain Tumor Diagnosis with L-Net: A Novel Deep Learning Approach for MRI Image Segmentation and Classification.

作者信息

Dénes-Fazakas Lehel, Kovács Levente, Eigner György, Szilágyi László

机构信息

Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary.

Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary.

出版信息

Biomedicines. 2024 Oct 18;12(10):2388. doi: 10.3390/biomedicines12102388.

Abstract

Brain tumors are highly complex, making their detection and classification a significant challenge in modern medical diagnostics. The accurate segmentation and classification of brain tumors from MRI images are crucial for effective treatment planning. This study aims to develop an advanced neural network architecture that addresses these challenges. We propose L-net, a novel architecture combining U-net for tumor boundary segmentation and a convolutional neural network (CNN) for tumor classification. These two units are coupled such a way that the CNN classifies the MRI images based on the features extracted by the U-net while segmenting the tumor, instead of relying on the original input images. The model is trained on a dataset of 3064 high-resolution MRI images, encompassing gliomas, meningiomas, and pituitary tumors, ensuring robust performance across different tumor types. L-net achieved a classification accuracy of up to 99.6%, surpassing existing models in both segmentation and classification tasks. The model demonstrated effectiveness even with lower image resolutions, making it suitable for diverse clinical settings. The proposed L-net model provides an accurate and unified approach to brain tumor segmentation and classification. Its enhanced performance contributes to more reliable and precise diagnosis, supporting early detection and treatment in clinical applications.

摘要

脑肿瘤高度复杂,这使得它们的检测和分类成为现代医学诊断中的一项重大挑战。从磁共振成像(MRI)图像中准确分割和分类脑肿瘤对于有效的治疗规划至关重要。本研究旨在开发一种先进的神经网络架构来应对这些挑战。我们提出了L-net,这是一种新颖的架构,它结合了用于肿瘤边界分割的U-net和用于肿瘤分类的卷积神经网络(CNN)。这两个单元以这样一种方式耦合,即CNN在分割肿瘤时基于U-net提取的特征对MRI图像进行分类,而不是依赖于原始输入图像。该模型在包含胶质瘤、脑膜瘤和垂体瘤的3064张高分辨率MRI图像数据集上进行训练,确保在不同肿瘤类型上都有稳健的性能。L-net在分割和分类任务中均达到了高达99.6%的分类准确率,超过了现有模型。即使在较低图像分辨率下,该模型也显示出有效性,使其适用于各种临床环境。所提出的L-net模型为脑肿瘤分割和分类提供了一种准确且统一的方法。其增强的性能有助于实现更可靠、精确的诊断,支持临床应用中的早期检测和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b92/11505252/2f6eb8a6f790/biomedicines-12-02388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验