Börner Nikolaus, Schoenberg Markus B, Pöllmann Benedikt, Pöschke Philipp, Böhm Christian, Koch Dominik, Drefs Moritz, Koliogiannis Dionysios, Andrassy Joachim, Werner Jens, Guba Markus Otto
Department of General, Visceral, and Transplant Surgery, LMU, 81377 Munich, Germany.
Transplantation Center Munich, LMU Munich, Campus Grosshadern, 81377 Munich, Germany.
J Clin Med. 2024 Oct 10;13(20):6046. doi: 10.3390/jcm13206046.
: Surgeries represent a mainstay of medical care globally. Patterns of complications are frequently recognized late and place a considerable burden on health care systems. The aim was to develop and test the first deep learning-adjusted CUSUM program (DL-CUSUM) to predict and monitor in-hospital mortality in real time after liver transplantation. : Data from 1066 individuals with 66,092 preoperatively available data point variables from 2004 to 2019 were included. DL-CUSUM is an application to predict in-hospital mortality. The area under the curve for risk adjustment with Model of End-stage Liver Disease (D-MELD), Balance of Risk (BAR) score, and deep learning (DL), as well as the ARL (average run length) and control limit (CL) for an in-control process over 5 years, were calculated. : D-MELD AUC was 0.618, BAR AUC was 0.648 and DL model AUC was 0.857. CL with BAR adjustment was 2.3 with an ARL of 326.31. D-MELD reached an ARL of 303.29 with a CL of 2.4. DL prediction resulted in a CL of 1.8 to reach an ARL of 332.67. : This work introduces the first use of an automated DL-CUSUM system to monitor postoperative in-hospital mortality after liver transplantation. It allows for the real-time risk-adjusted monitoring of process quality.
手术是全球医疗保健的主要支柱。并发症模式往往发现较晚,给医疗保健系统带来了相当大的负担。目的是开发并测试首个经深度学习调整的累积和程序(DL-CUSUM),以实时预测和监测肝移植后的院内死亡率。
纳入了2004年至2019年1066名个体的66092个术前可用数据点变量的数据。DL-CUSUM是一种用于预测院内死亡率的应用程序。计算了终末期肝病模型(D-MELD)、风险平衡(BAR)评分和深度学习(DL)进行风险调整的曲线下面积,以及5年控制过程中的平均运行长度(ARL)和控制限(CL)。
D-MELD曲线下面积为0.618,BAR曲线下面积为0.648,DL模型曲线下面积为0.857。BAR调整后的控制限为2.3,平均运行长度为326.31。D-MELD的平均运行长度为303.29,控制限为2.4。DL预测的控制限为1.8,平均运行长度为332.67。
这项工作首次介绍了使用自动化DL-CUSUM系统监测肝移植术后院内死亡率。它允许对过程质量进行实时风险调整监测。