Li Yilai, Zhou Yi, Yuan Jing, Ye Fei, Gu Quanquan
ByteDance Research, San Jose, CA, USA.
ByteDance Research, Shanghai, China.
Nat Methods. 2024 Dec;21(12):2318-2326. doi: 10.1038/s41592-024-02486-1. Epub 2024 Oct 29.
Resolving conformational heterogeneity in cryogenic electron microscopy datasets remains an important challenge in structural biology. Previous methods have often been restricted to working exclusively on volumetric densities, neglecting the potential of incorporating any preexisting structural knowledge as prior or constraints. Here we present cryoSTAR, which harnesses atomic model information as structural regularization to elucidate such heterogeneity. Our method uniquely outputs both coarse-grained models and density maps, showcasing the molecular conformational changes at different levels. Validated against four diverse experimental datasets, spanning large complexes, a membrane protein and a small single-chain protein, our results consistently demonstrate an efficient and effective solution to conformational heterogeneity with minimal human bias. By integrating atomic model insights with cryogenic electron microscopy data, cryoSTAR represents a meaningful step forward, paving the way for a deeper understanding of dynamic biological processes.
解决低温电子显微镜数据集中的构象异质性仍然是结构生物学中的一项重要挑战。以前的方法通常仅限于专门处理体积密度,而忽略了将任何预先存在的结构知识作为先验或约束条件纳入的可能性。在此,我们展示了cryoSTAR,它利用原子模型信息作为结构正则化来阐明这种异质性。我们的方法独特地输出粗粒度模型和密度图,展示了不同水平的分子构象变化。针对四个不同的实验数据集进行验证,涵盖大型复合物、膜蛋白和小型单链蛋白,我们的结果一致证明了一种高效且有效的解决方案,可最大限度地减少人为偏差来解决构象异质性问题。通过将原子模型见解与低温电子显微镜数据相结合,cryoSTAR代表了向前迈出的有意义的一步,为更深入地理解动态生物过程铺平了道路。