Smine Zineb, Poeta Sara, De Caluwé Alex, Desmet Antoine, Garibaldi Cristina, Brou Boni Kevin, Levillain Hugo, Van Gestel Dirk, Reynaert Nick, Dhont Jennifer
Radiophysics and MRI Physics Laboratory, Université Libre De Bruxelles (ULB), Brussels, Belgium; Department of Medical Physics, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium.
Department of Medical Physics, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium.
Radiother Oncol. 2025 Jan;202:110615. doi: 10.1016/j.radonc.2024.110615. Epub 2024 Nov 1.
Postoperative radiotherapy (RT) has been shown to effectively reduce disease recurrence and mortality in breast cancer (BC) treatment. A critical step in the planning workflow is the accurate delineation of clinical target volumes (CTV) and organs-at-risk (OAR). This literature review evaluates recent advancements in deep-learning (DL) and atlas-based auto-contouring techniques for CTVs and OARs in BC planning-CT images for RT. It examines their performance regarding geometrical and dosimetric accuracy, inter-observer variability, and time efficiency. Our findings indicate that both DL- and atlas-based methods generally show comparable performance across OARs and CTVs, with DL methods slightly outperforming in consistency and accuracy. Auto-segmentation of breast and most OARs achieved robust results in both segmentation quality and dosimetric planning. However, lymph node levels (LNLs) presented the greatest challenge in auto-segmentation with significant impact on dosimetric planning. The translation of these findings into clinical practice is limited by the geometric performance metrics and the lack of dose evaluation studies. Additionally, auto-contouring algorithms showed diverse structure sets, while training datasets varied in size, origin, patient positioning and imaging protocols, affecting model sensitivity. Guideline inconsistencies and varying definitions of ground truth led to substantial variability, suggesting a need for a reliable consensus training dataset. Finally, our review highlights the popularity of the U-Net architecture. In conclusion, while automated contouring has proven efficient for many OARs and the breast-CTV, further improvements are necessary in LNL delineation, dosimetric analysis, and consensus building.
术后放疗(RT)已被证明在乳腺癌(BC)治疗中能有效降低疾病复发率和死亡率。计划流程中的关键步骤是准确勾画临床靶区(CTV)和危及器官(OAR)。本文献综述评估了深度学习(DL)和基于图谱的自动轮廓勾画技术在BC放疗计划CT图像中CTV和OAR勾画方面的最新进展。研究了它们在几何和剂量学准确性、观察者间变异性以及时间效率方面的表现。我们的研究结果表明,基于DL和图谱的方法在OAR和CTV上的总体表现相当,DL方法在一致性和准确性方面略胜一筹。乳腺和大多数OAR的自动分割在分割质量和剂量学计划方面都取得了可靠的结果。然而,淋巴结水平(LNL)的自动分割面临最大挑战,对剂量学计划有重大影响。这些研究结果转化为临床实践受到几何性能指标和剂量评估研究缺乏的限制。此外,自动轮廓勾画算法显示出不同的结构集,而训练数据集在大小、来源、患者体位和成像协议方面各不相同,影响了模型的敏感性。指南不一致和地面真值定义的差异导致了很大的变异性,这表明需要一个可靠的共识训练数据集。最后,我们的综述强调了U-Net架构的受欢迎程度。总之,虽然自动轮廓勾画已被证明对许多OAR和乳腺CTV有效,但在LNL勾画、剂量学分析和建立共识方面仍需进一步改进。