Department of Mechanical Engineering, SNS College of Technology, Coimbatore, TN, India.
School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, JB, Malaysia.
Int J Nanomedicine. 2024 Nov 1;19:11129-11141. doi: 10.2147/IJN.S460921. eCollection 2024.
Wound patches are essential for wound healing, yet developing patches with enhanced mechanical and biological properties remains challenging. This study aimed to enhance the mechanical and biological properties of polyurethane (PU) by incorporating magnesium chloride (MgCl) into the patch.
The composite patch was fabricated using the electrospinning technique, producing nanofibers from a mixture of PU and MgCl solutions. The electrospun PU/MgCl was then evaluated for various physico-chemical characteristics and biological properties to determine its suitability for wound healing applications.
Tensile strength testing showed that the mechanical properties of the composite patch (10.98 ± 0.18) were significantly improved compared to pristine PU (6.66 ± 0.44). Field scanning electron microscopy (FESEM) revealed that the electrospun nanofiber patch had a smooth, randomly oriented non-woven structure (PU - 830 ± 145 nm and PU/MgCl - 508 ± 151 nm). Fourier infrared spectroscopy (FTIR) confirmed magnesium chloride's presence in the polyurethane matrix via strong hydrogen bond formation. Blood compatibility studies using coagulation assays, including activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolysis assays, demonstrated improved blood compatibility of the composite patch (APTT - 174 ± 0.5 s, PT - 91 ± 0.8s, and Hemolytic percentage - 1.78%) compared to pristine PU (APTT - 152 ± 1.2s, PT - 73 ± 1.7s, and Hemolytic percentage - 2.55%). Antimicrobial testing showed an enhanced zone of inhibition (Staphylococcus aureus - 21.5 ± 0.5 mm and Escherichia coli - 27.5 ± 2.5 mm) compared to the control, while cell viability assays confirmed the non-cytotoxic nature of the developed patches on fibroblast cells.
The study concludes that adding MgCl to PU significantly improves the mechanical, biological, and biocompatibility properties of the patch. This composite patch shows potential for future wound healing applications, with further studies needed to validate its efficacy in-vivo.
伤口贴对于伤口愈合至关重要,但开发具有增强的机械和生物学性能的贴剂仍然具有挑战性。本研究旨在通过将氯化镁 (MgCl) 掺入贴剂中来增强聚氨酯 (PU) 的机械和生物学性能。
使用静电纺丝技术制备复合贴片,从 PU 和 MgCl 溶液的混合物中产生纳米纤维。然后对电纺 PU/MgCl 进行各种物理化学特性和生物学特性评估,以确定其在伤口愈合应用中的适用性。
拉伸强度测试表明,与原始 PU(6.66 ± 0.44)相比,复合贴片的机械性能(10.98 ± 0.18)显著提高。场扫描电子显微镜(FESEM)显示,电纺纳米纤维贴片具有光滑、随机取向的无纺织物结构(PU - 830 ± 145nm 和 PU/MgCl - 508 ± 151nm)。傅里叶变换红外光谱(FTIR)通过强氢键形成证实了氯化镁在聚氨酯基质中的存在。使用凝血测定(包括活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和溶血测定)进行血液相容性研究,表明与原始 PU 相比,复合贴片的血液相容性得到改善(APTT - 174 ± 0.5s、PT - 91 ± 0.8s 和溶血百分比 - 1.78%)(APTT - 152 ± 1.2s、PT - 73 ± 1.7s 和溶血百分比 - 2.55%)。抗菌测试显示抑制区(金黄色葡萄球菌 - 21.5 ± 0.5mm 和大肠杆菌 - 27.5 ± 2.5mm)与对照相比有所增强,而细胞活力测定证实了开发的贴片对成纤维细胞的非细胞毒性。
研究得出结论,向 PU 中添加 MgCl 可显著提高贴片的机械、生物学和生物相容性特性。这种复合贴片显示出未来伤口愈合应用的潜力,需要进一步的研究来验证其在体内的疗效。