Suppr超能文献

通过全基因组关联研究(GWAS)和群体结构分析在ARC面板中鉴定稻瘟病抗性的显著单核苷酸多态性(SNPs)和候选基因座 。 (注:原文结尾不完整,推测补充了“稻瘟病抗性相关内容”以使译文更通顺合理)

Identification of significant SNPs and candidate loci for blast disease resistance via GWAS and population structure analysis in ARC panel of .

作者信息

Barua Parinda, Phukon Munmi, Munda Sunita, Ranga Vipin, Sruthi R, Borah Jyoti Lekha, Das Janardan, Dutta Pompi, Bhattacharyya Ashok, Modi Mahendra Kumar, Chetia Sanjay Kumar

机构信息

Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India.

DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India.

出版信息

Physiol Mol Biol Plants. 2024 Oct;30(10):1673-1689. doi: 10.1007/s12298-024-01518-6. Epub 2024 Oct 26.

Abstract

UNLABELLED

(syn. ) is responsible for the blast disease in rice resulting in a greater extent of yield loss. However, some of the cultivars of rice have the ability to survive this devastating infection due to the presence of (resistance) genes. Therefore, genome wide association study (GWAS) was undertaken using a panel of 400 rice landraces (ARC panel) and a set of filtered 38,723 single nucleotide polymorphisms (SNPs). The highest SNPs were mapped to chromosome 1 with a number of 4332 SNPs and lowest (2252) in chromosome 12. The ARC panel was evaluated phenotypically which revealed that 6% of the selected cultivars has resistance to rice blast disease with SES score of 1. The majority of the resistant cultivars belong to the group Asra of the panel. The population structure analysis was executed wherein three genetic subpopulations were identified namely RC1, RC2, RC3 and an admixture population constituting 48 accessions. Further, GWAS detected 15 significant association signal with value in the range of 1.03E-05 to 1.03E-04, effect ranged from - 1.18 to 1.06, phenotypic variance explained was from 0 to 7.14%, R of 0.047 to 0.058, and minor allele frequency of 0.107 to 0.444. Eleven (Os01g39980, Os01g56130, Os01g67100, Os01g67110, Os03g41030, Os04g33310, Os07g42104, Os09g06464, Os09g08920, Os09g38800, Os12g37680) out of these 15 significant associations were identified as the candidate loci for the blast resistance in rice that will serve as an important genetic resistance source to be introgressed into an elite rice line in future breeding programs for deciphering blast resistance in rice. The GWAS study presented in this article helped to uncover significant gene regions which encode proteins to resist blast infection in rice plant. This is the first report on the GWAS analysis for blast resistance in unique landraces of rice from Northeast India employing single nucleotide polymorphism.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12298-024-01518-6.

摘要

未标注

(同义词)导致水稻稻瘟病,造成更大程度的产量损失。然而,一些水稻品种由于存在(抗性)基因而有能力在这种毁灭性感染中存活下来。因此,利用一组400个水稻地方品种(ARC群体)和一组经过筛选的38723个单核苷酸多态性(SNP)进行了全基因组关联研究(GWAS)。最高数量的SNP定位到第1号染色体,有4332个SNP,而在第12号染色体上数量最少(2252个)。对ARC群体进行了表型评估,结果显示6%的选定品种对稻瘟病具有抗性,SES评分为1。大多数抗性品种属于该群体的Asra组。进行了群体结构分析,确定了三个遗传亚群,即RC1、RC2、RC3和一个由48个种质组成的混合群体。此外,GWAS检测到15个显著关联信号,P值范围为1.03E - 05至1.03E - 04,效应范围为 - 1.18至1.06,表型变异解释率为0至7.14%,R为0.047至0.058,次要等位基因频率为0.107至0.444。这15个显著关联中的11个(Os01g39980、Os01g56130、Os01g67100、Os01g67110、Os03g41030、Os04g33310、Os07g42104、Os09g06464、Os09g

相似文献

2
A genome-wide association study of panicle blast resistance to in rice.水稻对穗瘟抗性的全基因组关联研究。
Mol Breed. 2024 Jul 11;44(7):49. doi: 10.1007/s11032-024-01486-5. eCollection 2024 Jul.

本文引用的文献

5
WAKsing plant immunity, waning diseases.唤醒植物免疫力,减少疾病。
J Exp Bot. 2022 Jan 5;73(1):22-37. doi: 10.1093/jxb/erab422.
7
Role of jasmonic acid in plants: the molecular point of view.茉莉酸在植物中的作用:分子观点。
Plant Cell Rep. 2021 Aug;40(8):1471-1494. doi: 10.1007/s00299-021-02687-4. Epub 2021 Apr 5.
8
Salicylic Acid: Biosynthesis and Signaling.水杨酸:生物合成与信号转导。
Annu Rev Plant Biol. 2021 Jun 17;72:761-791. doi: 10.1146/annurev-arplant-081320-092855. Epub 2021 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验