Suppr超能文献

基于深度卷积神经网络的肝脏局灶性病变自动检测与分类:一项初步研究。

Automatic Detection and Classification of Focal Liver Lesions Based on Deep Convolutional Neural Networks: A Preliminary Study.

作者信息

Zhou Jiarong, Wang Wenzhe, Lei Biwen, Ge Wenhao, Huang Yu, Zhang Linshi, Yan Yingcai, Zhou Dongkai, Ding Yuan, Wu Jian, Wang Weilin

机构信息

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China.

出版信息

Front Oncol. 2021 Jan 29;10:581210. doi: 10.3389/fonc.2020.581210. eCollection 2020.

Abstract

With the increasing daily workload of physicians, computer-aided diagnosis (CAD) systems based on deep learning play an increasingly important role in pattern recognition of diagnostic medical images. In this paper, we propose a framework based on hierarchical convolutional neural networks (CNNs) for automatic detection and classification of focal liver lesions (FLLs) in multi-phasic computed tomography (CT). A total of 616 nodules, composed of three types of malignant lesions (hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and metastasis) and benign lesions (hemangioma, focal nodular hyperplasia, and cyst), were randomly divided into training and test sets at an approximate ratio of 3:1. To evaluate the performance of our model, other commonly adopted CNN models and two physicians were included for comparison. Our model achieved the best results to detect FLLs, with an average test precision of 82.8%, recall of 93.4%, and F1-score of 87.8%. Our model initially classified FLLs into malignant and benign and then classified them into more detailed classes. For the binary and six-class classification, our model achieved average accuracy results of 82.5 and73.4%, respectively, which were better than the other three classification neural networks. Interestingly, the classification performance of the model was placed between a junior physician and a senior physician. Overall, this preliminary study demonstrates that our proposed multi-modality and multi-scale CNN structure can locate and classify FLLs accurately in a limited dataset, and would help inexperienced physicians to reach a diagnosis in clinical practice.

摘要

随着医生日常工作量的增加,基于深度学习的计算机辅助诊断(CAD)系统在诊断医学图像的模式识别中发挥着越来越重要的作用。在本文中,我们提出了一种基于分层卷积神经网络(CNN)的框架,用于在多期计算机断层扫描(CT)中自动检测和分类肝脏局灶性病变(FLL)。共有616个结节,由三种恶性病变(肝细胞癌、肝内胆管癌和转移瘤)和良性病变(血管瘤、局灶性结节性增生和囊肿)组成,以大约3:1的比例随机分为训练集和测试集。为了评估我们模型的性能,纳入了其他常用的CNN模型和两名医生进行比较。我们的模型在检测FLL方面取得了最佳结果,平均测试精度为82.8%,召回率为93.4%,F1分数为87.8%。我们的模型首先将FLL分为恶性和良性,然后将它们分为更详细的类别。对于二分类和六分类,我们的模型分别取得了82.5%和73.4%的平均准确率结果,优于其他三个分类神经网络。有趣的是,该模型的分类性能介于初级医生和高级医生之间。总体而言,这项初步研究表明,我们提出的多模态和多尺度CNN结构可以在有限的数据集中准确地定位和分类FLL,并有助于经验不足的医生在临床实践中做出诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1594/7878526/e424c78e5e9e/fonc-10-581210-g001.jpg

相似文献

1
5
Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
Eur Radiol. 2019 Jul;29(7):3338-3347. doi: 10.1007/s00330-019-06205-9. Epub 2019 Apr 23.
10
A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
PLoS One. 2019 Jul 12;14(7):e0219369. doi: 10.1371/journal.pone.0219369. eCollection 2019.

引用本文的文献

1
When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects.
ILIVER. 2023 Mar 4;2(1):73-87. doi: 10.1016/j.iliver.2023.02.002. eCollection 2023 Mar.
2
Artificial intelligence in imaging for liver disease diagnosis.
Front Med (Lausanne). 2025 Apr 25;12:1591523. doi: 10.3389/fmed.2025.1591523. eCollection 2025.
3
SenseCare: a research platform for medical image informatics and interactive 3D visualization.
Front Radiol. 2024 Nov 21;4:1460889. doi: 10.3389/fradi.2024.1460889. eCollection 2024.
5
Automatic Classification of Focal Liver Lesions Based on Multi-Sequence MRI.
J Imaging Inform Med. 2024 Nov 11. doi: 10.1007/s10278-024-01326-0.
7
Artificial intelligence for detection and characterization of focal hepatic lesions: a review.
Abdom Radiol (NY). 2025 Apr;50(4):1564-1583. doi: 10.1007/s00261-024-04597-x. Epub 2024 Oct 5.
8
A flexible deep learning framework for liver tumor diagnosis using variable multi-phase contrast-enhanced CT scans.
J Cancer Res Clin Oncol. 2024 Oct 3;150(10):443. doi: 10.1007/s00432-024-05977-y.
9
Artificial intelligence techniques in liver cancer.
Front Oncol. 2024 Sep 3;14:1415859. doi: 10.3389/fonc.2024.1415859. eCollection 2024.
10
Focal liver lesion diagnosis with deep learning and multistage CT imaging.
Nat Commun. 2024 Aug 15;15(1):7040. doi: 10.1038/s41467-024-51260-6.

本文引用的文献

1
Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks.
Radiother Oncol. 2020 Apr;145:193-200. doi: 10.1016/j.radonc.2020.01.021. Epub 2020 Feb 8.
2
Automatic Detection of Focal Liver Lesions in Multi-phase CT Images Using A Multi-channel & Multi-scale CNN.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:872-875. doi: 10.1109/EMBC.2019.8857292.
3
Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging.
Clin Cancer Res. 2020 Apr 15;26(8):1944-1952. doi: 10.1158/1078-0432.CCR-19-0374. Epub 2020 Jan 14.
4
A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans.
IEEE Trans Med Imaging. 2020 May;39(5):1419-1429. doi: 10.1109/TMI.2019.2947595. Epub 2019 Oct 29.
5
Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI.
Eur Radiol. 2019 Jul;29(7):3338-3347. doi: 10.1007/s00330-019-06205-9. Epub 2019 Apr 23.
6
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
7
Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor Differentiation.
IEEE J Biomed Health Inform. 2019 May;23(3):923-930. doi: 10.1109/JBHI.2018.2886276. Epub 2018 Dec 11.
8
Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs.
Comput Biol Med. 2018 Dec 1;103:220-231. doi: 10.1016/j.compbiomed.2018.10.011. Epub 2018 Oct 12.
9
Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening.
Clin Cancer Res. 2018 Dec 1;24(23):5902-5909. doi: 10.1158/1078-0432.CCR-18-1115. Epub 2018 Oct 11.
10
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验