Zhang Rong, Yang Wangfei, Zhang Rixin, Rijal Sadikshya, Youssef Abdelrahaman, Zheng Wenwei, Tian Xiao-Jun
School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States.
College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States.
bioRxiv. 2024 Nov 3:2024.11.01.621586. doi: 10.1101/2024.11.01.621586.
Fluctuations in host cell growth poses a significant challenge to synthetic gene circuits, often disrupting circuit function. Existing solutions typically rely on circuit redesign with alternative topologies or additional control elements, yet a broadly applicable approach remains elusive. Here, we introduce a new strategy based on liquid-liquid phase separation (LLPS) to stabilize circuit performance. By engineering a self-activating circuit with transcription factors (TF) fused to an intrinsically disordered region (IDR), we enable the formation of TF condensates at the promoter region, maintaining local TF concentration despite growth-mediated dilution. This condensate formation preserves bistable memory in the self-activating circuit, demonstrating that phase separation can robustly counteract growth fluctuations, offering a novel design principle for resilient synthetic circuits.
宿主细胞生长的波动对合成基因回路构成了重大挑战,常常会破坏回路功能。现有的解决方案通常依赖于采用替代拓扑结构或额外控制元件进行回路重新设计,但一种广泛适用的方法仍然难以捉摸。在这里,我们引入了一种基于液-液相分离(LLPS)的新策略来稳定回路性能。通过设计一个将转录因子(TF)与一个内在无序区域(IDR)融合的自激活回路,我们能够在启动子区域形成TF凝聚物,尽管生长介导的稀释作用存在,但仍能维持局部TF浓度。这种凝聚物的形成保留了自激活回路中的双稳态记忆,表明相分离可以有力地抵消生长波动,为弹性合成回路提供了一种新颖的设计原则。