Suppr超能文献

生成式人工智能扩散模型的机遇与挑战。

Opportunities and challenges of diffusion models for generative AI.

作者信息

Chen Minshuo, Mei Song, Fan Jianqing, Wang Mengdi

机构信息

Department of Electrical and Computer Engineering, Princeton University, Princeton 08544, USA.

Department of Statistics, University of California, Berkeley, Berkeley 94720, USA.

出版信息

Natl Sci Rev. 2024 Oct 3;11(12):nwae348. doi: 10.1093/nsr/nwae348. eCollection 2024 Dec.

Abstract

Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active control towards task-desired properties. Despite the significant empirical success, theoretical underpinnings of diffusion models are very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models to highlight their sample generation capabilities under various control goals. At the same time, we dive into the unique working flow of diffusion models through the lens of stochastic processes. We identify theoretical challenges in analyzing diffusion models, owing to their complicated training procedure and interaction with the underlying data distribution. To address these challenges, we overview several promising advances, demonstrating diffusion models as an efficient distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured optimization through diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking theories and methods of diffusion models.

摘要

扩散模型是一种强大且通用的生成式人工智能技术,已取得了巨大成功,并在各种应用中开辟了新的可能性。在这些应用中,扩散模型提供灵活的高维数据建模,并在朝着任务期望属性的主动控制下充当生成新样本的采样器。尽管在实证方面取得了显著成功,但扩散模型的理论基础非常有限,这可能会减缓进一步利用和改进扩散模型的原则性方法创新。在本文中,我们回顾扩散模型的新兴应用,以突出它们在各种控制目标下的样本生成能力。同时,我们通过随机过程的视角深入探讨扩散模型独特的工作流程。由于扩散模型复杂的训练过程以及与基础数据分布的相互作用,我们确定了分析扩散模型时存在的理论挑战。为应对这些挑战,我们概述了几个有前景的进展,证明扩散模型是一种高效的分布学习器和采样器。此外,我们通过扩散模型引入了高维结构化优化的新途径,其中将寻找解决方案重新表述为条件采样问题并由扩散模型解决。最后,我们讨论了扩散模型的未来发展方向。本文的目的是提供全面的介绍,以激发扩散模型的前瞻性理论和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d94/11562846/2973b7eebc7b/nwae348fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验