Suppr超能文献

基于结构的细菌单宁酶聚类和突变揭示了活性位点封闭结构域的重要性和多样性。

Structure-based clustering and mutagenesis of bacterial tannases reveals the importance and diversity of active site-capping domains.

机构信息

Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.

Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.

出版信息

Protein Sci. 2024 Dec;33(12):e5202. doi: 10.1002/pro.5202.

Abstract

Tannins are critical plant defense metabolites, enriched in bark and leaves, that protect against microorganisms and insects by binding to and precipitating proteins. Hydrolyzable tannins contain ester bonds which can be cleaved by tannases-serine hydrolases containing so-called "cap" domains covering their active sites. However, comprehensive insights into the biochemical properties and structural diversity of tannases are limited, especially regarding their cap domains. We here present a code pipeline for structure prediction-based hierarchical clustering to categorize the whole family of bacterial tannases, and have used it to discover new types of cap domains and other structural insertions among these enzymes. Subsequently, we used two recently identified tannases from the gut/soil bacterium Clostridium butyricum as model systems to explore the biochemical and structural properties of the cap domains of tannases. We demonstrate using molecular dynamics and mutagenesis that the cap domain covering the active site plays a major role in enzyme substrate preference, inhibition, and activity-despite not directly interacting with smaller substrates. The present work provides deeper knowledge into the mechanism, structural dynamics, and diversity of tannases. The structure-based clustering approach presents a new way of classifying any other enzyme family, and will be of relevance for enzyme types where activity is influenced by variable loop or insert regions appended to a core protein fold.

摘要

单宁是植物防御代谢物的关键成分,富含于树皮和树叶中,通过与蛋白质结合并沉淀来保护植物免受微生物和昆虫的侵害。可水解单宁含有酯键,可被单宁酶(一种含有所谓“帽”结构域的丝氨酸水解酶)切割,这些结构域覆盖了它们的活性位点。然而,人们对单宁酶的生化性质和结构多样性的全面了解有限,尤其是关于它们的帽结构域。我们在此提出了一种基于结构预测的层次聚类的编码管道,用于对细菌单宁酶的整个家族进行分类,并利用它发现了这些酶中新型的帽结构域和其他结构插入。随后,我们使用来自肠道/土壤细菌丁酸梭菌的两种新鉴定的单宁酶作为模型系统,来探索单宁酶的帽结构域的生化和结构特性。我们通过分子动力学和突变研究证明,覆盖活性位点的帽结构域在酶的底物偏好、抑制和活性方面起着重要作用,尽管它不直接与较小的底物相互作用。本工作为单宁酶的机制、结构动力学和多样性提供了更深入的认识。基于结构的聚类方法为任何其他酶家族的分类提供了一种新方法,对于那些活性受附加到核心蛋白折叠上的可变环或插入区影响的酶类型将具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb3/11571031/3c6c8c8d6cbd/PRO-33-e5202-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验