Suppr超能文献

基于深度学习的口腔锥形束 CT 图像下颌骨结构自动分割。

Automatic jawbone structure segmentation on dental CBCT images via deep learning.

机构信息

Angelalign Technology Inc., No. 500 Zhengli Road, Yangpu District, Shanghai, 200433, China.

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

出版信息

Clin Oral Investig. 2024 Nov 28;28(12):663. doi: 10.1007/s00784-024-06061-y.

Abstract

OBJECTIVES

This study developed and evaluated a two-stage deep learning-based system for automatic segmentation of mandibular cortical bone, mandibular cancellous bone, maxillary cortical bone and maxillary cancellous bone on cone beam computed tomography (CBCT) images.

MATERIALS AND METHODS

A dataset containing 155 CBCT scans acquired with different parameters was obtained. A two-stage deep learning-based system was developed for automatically segmenting jawbone structures. The Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) were used to assess the segmentation performance of the system by comparing the automatic segmentation results with the ground truth. The impact of dental and quality abnormalities on segmentation performance was analysed, and a comparison of automatic segmentation (AS) with manually refined segmentation (MRS) was reported.

RESULTS

The system achieved promising segmentation performance, with average DSC values of 93.69%, 96.83%, 86.14% and 95.57% and average ASSD values of 0.13 mm, 0.16 mm, 0.29 mm and 0.41 mm for the mandibular cortical bone, mandibular cancellous bone, maxillary cortical bone and maxillary cancellous bone, respectively. Quality abnormalities had a negative impact on segmentation performance. The performance metrics (DSCs > 98.8% and ASSDs < 0.1 mm) indicated high overlap between the AS and MRS.

CONCLUSION

The proposed system offers an accurate and time-efficient method for segmenting jawbone structures on CBCT images.

CLINICAL RELEVANCE

Automatically segmenting jawbone structures is essential in most digital dental workflows. The proposed system has considerable potential for application in digital clinical workflows to assist dentists in making more accurate diagnoses and developing patient-specific treatment plans.

摘要

目的

本研究开发并评估了一种基于两阶段深度学习的方法,用于在锥形束 CT(CBCT)图像上自动分割下颌皮质骨、下颌松质骨、上颌皮质骨和上颌松质骨。

材料和方法

获得了包含 155 个不同参数采集的 CBCT 扫描的数据集。开发了一种基于两阶段深度学习的系统,用于自动分割颌骨结构。通过将自动分割结果与真实情况进行比较,使用 Dice 相似系数(DSC)和平均对称表面距离(ASSD)评估系统的分割性能。分析了牙齿和质量异常对分割性能的影响,并报告了自动分割(AS)与手动细化分割(MRS)的比较。

结果

该系统实现了有前景的分割性能,平均 DSC 值分别为 93.69%、96.83%、86.14%和 95.57%,平均 ASSD 值分别为 0.13mm、0.16mm、0.29mm 和 0.41mm,用于下颌皮质骨、下颌松质骨、上颌皮质骨和上颌松质骨。质量异常对分割性能有负面影响。性能指标(DSC>98.8%和 ASSD<0.1mm)表明 AS 和 MRS 之间具有高度的重叠。

结论

所提出的系统为 CBCT 图像上的颌骨结构分割提供了一种准确且高效的方法。

临床意义

自动分割颌骨结构是大多数数字牙科工作流程的基础。该系统在数字临床工作流程中有很大的应用潜力,可以帮助牙医做出更准确的诊断并制定针对患者的治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验