Suppr超能文献

采用前瞻性超构设计,结合脑成像、遗传学和健康问卷数据以及瑞典国家登记处,预测长期疼痛。

Predicting long-term pain by combining brain imaging, genetics and health questionnaire data with Swedish national registries using a prospective superstruct design.

机构信息

Department of Clinical Neuroscience, Karolinska Institutet, Stockhom, Sweden.

Department of Psychology and Social Work, Mid University Sweden, Östersund, Sweden.

出版信息

Mol Pain. 2024 Jan-Dec;20:17448069241301628. doi: 10.1177/17448069241301628.

Abstract

BACKGROUND

Long-term pain is a common health problem that results in disability for patients of all ages, leading to an enormous economic burden. Over 20% of the population suffer from long-term pain. Unfortunately, there are no clinical tests that predicts who will develop long-term pain. The overall aim is to predict future pain incidence based on brain function, pain behavior, health status, and genetic variability.

METHOD

PrePain utilizes a superstruct design, which involves recruiting participants from ongoing research projects. Eligible individuals for participation in PrePain were over 18 years old and free from long-term pain. During the baseline visit, participants provide pain and health-related questionnaires, undergo structural and functional MRI scans, and provide a saliva sample for DNA extraction. Individual baseline measures are then routinely followed-up via national registries.

RESULT

We present quality-assessed data from over 300 participants. The average age was 34 years, and most participants were women (75%). Participants rated their pain sensitivity above average and reported low avoidance. Catastrophizing thoughts during painful episodes were rated as moderate. Assessments of (f)MRI data indicated generally good image quality. In this first follow-up, we found that 45 participants had a pain-related diagnoses.

CONCLUSION

Results indicate that a superstruct design is feasible for collecting a large number of high-quality data. The incidence of long-term pain indicates that a sufficient number of participants have been recruited to complete the prediction analyses. PrePain is a unique prospective pain database with a fair prognosis to determine risk factors of long-term pain.

摘要

背景

长期疼痛是一种常见的健康问题,会导致各年龄段患者残疾,造成巨大的经济负担。超过 20%的人口患有长期疼痛。不幸的是,目前还没有临床测试可以预测谁会患上长期疼痛。总体目标是基于大脑功能、疼痛行为、健康状况和遗传变异性来预测未来疼痛的发生率。

方法

PrePain 采用了超级结构设计,涉及从正在进行的研究项目中招募参与者。PrePain 的参与者须年满 18 岁且无长期疼痛史。在基线访问期间,参与者提供疼痛和健康相关的问卷、进行结构和功能磁共振成像扫描,并提供唾液样本进行 DNA 提取。然后,通过国家登记处定期对个体的基线测量值进行随访。

结果

我们提供了来自 300 多名参与者的经过质量评估的数据。平均年龄为 34 岁,大多数参与者为女性(75%)。参与者对自己的疼痛敏感性评价偏高,并报告低回避。在疼痛发作期间的灾难性思维被评为中度。(f)MRI 数据评估表明图像质量通常较好。在首次随访中,我们发现 45 名参与者有与疼痛相关的诊断。

结论

结果表明,超级结构设计可用于收集大量高质量数据。长期疼痛的发生率表明已经招募了足够数量的参与者来完成预测分析。PrePain 是一个独特的前瞻性疼痛数据库,具有良好的预后,可以确定长期疼痛的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78cd/11605748/ba91bc8bb89d/10.1177_17448069241301628-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验