Suppr超能文献

浅电路计算中的无条件量子魔法优势。

Unconditional quantum magic advantage in shallow circuit computation.

作者信息

Zhang Xingjian, Pan Zhaokai, Liu Guoding

机构信息

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.

QICI Quantum Information and Computation Initiative, School of Computing and Data Science, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.

出版信息

Nat Commun. 2024 Dec 3;15(1):10513. doi: 10.1038/s41467-024-54864-0.

Abstract

Quantum theory promises computational speed-ups over classical approaches. The celebrated Gottesman-Knill Theorem implies that the full power of quantum computation resides in the specific resource of "magic" states-the secret sauce to establish universal quantum computation. However, it is still questionable whether magic indeed brings the believed quantum advantage, ridding unproven complexity assumptions or black-box oracles. In this work, we demonstrate the first unconditional magic advantage: a separation between the power of generic constant-depth or shallow quantum circuits and magic-free counterparts. For this purpose, we link the shallow circuit computation with the strongest form of quantum nonlocality-quantum pseudo-telepathy, where distant non-communicating observers generate perfectly synchronous statistics. We prove quantum magic is indispensable for such correlated statistics in a specific nonlocal game inspired by the linear binary constraint system. Then, we translate generating quantum pseudo-telepathy into computational tasks, where magic is necessary for a shallow circuit to meet the target. As a by-product, we provide an efficient algorithm to solve a general linear binary constraint system over the Pauli group, in contrast to the broad undecidability in constraint systems. We anticipate our results will enlighten the final establishment of the unconditional advantage of universal quantum computation.

摘要

量子理论有望在计算速度上超越经典方法。著名的戈特斯曼 - 基尔定理表明,量子计算的全部能力在于“魔法”态这一特定资源——它是实现通用量子计算的秘诀。然而,魔法是否真的能带来人们所认为的量子优势,摆脱未经证实的复杂性假设或黑箱预言机,仍然存在疑问。在这项工作中,我们展示了首个无条件的魔法优势:通用常数深度或浅量子电路的能力与无魔法对应电路之间的分离。为此,我们将浅电路计算与最强形式的量子非局域性——量子伪心灵感应联系起来,在这种情况下,遥远的非通信观察者会产生完全同步的统计数据。我们证明,在受线性二元约束系统启发的特定非局域游戏中,量子魔法对于这种相关统计是不可或缺的。然后,我们将生成量子伪心灵感应转化为计算任务,在这些任务中,浅电路要达到目标就必须有魔法。作为一个副产品,我们提供了一种有效的算法来解决泡利群上的一般线性二元约束系统,这与约束系统中广泛存在的不可判定性形成对比。我们预计我们的结果将为通用量子计算无条件优势的最终确立提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3214/11615043/2a38031d6f48/41467_2024_54864_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验