DeVerna Matthew R, Yan Harry Yaojun, Yang Kai-Cheng, Menczer Filippo
Observatory on Social Media, Indiana University, Bloomington, IN 47408.
Stanford Social Media Lab, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2322823121. doi: 10.1073/pnas.2322823121. Epub 2024 Dec 4.
Fact checking can be an effective strategy against misinformation, but its implementation at scale is impeded by the overwhelming volume of information online. Recent AI language models have shown impressive ability in fact-checking tasks, but how humans interact with fact-checking information provided by these models is unclear. Here, we investigate the impact of fact-checking information generated by a popular large language model (LLM) on belief in, and sharing intent of, political news headlines in a preregistered randomized control experiment. Although the LLM accurately identifies most false headlines (90%), we find that this information does not significantly improve participants' ability to discern headline accuracy or share accurate news. In contrast, viewing human-generated fact checks enhances discernment in both cases. Subsequent analysis reveals that the AI fact-checker is harmful in specific cases: It decreases beliefs in true headlines that it mislabels as false and increases beliefs in false headlines that it is unsure about. On the positive side, AI fact-checking information increases the sharing intent for correctly labeled true headlines. When participants are given the option to view LLM fact checks and choose to do so, they are significantly more likely to share both true and false news but only more likely to believe false headlines. Our findings highlight an important source of potential harm stemming from AI applications and underscore the critical need for policies to prevent or mitigate such unintended consequences.
事实核查可以成为对抗错误信息的有效策略,但在大规模实施时却受到在线信息海量的阻碍。最近的人工智能语言模型在事实核查任务中展现出了令人印象深刻的能力,但人类如何与这些模型提供的事实核查信息互动尚不清楚。在此,我们在一项预先注册的随机对照实验中,研究了一种流行的大语言模型(LLM)生成的事实核查信息对政治新闻标题的可信度和分享意愿的影响。尽管该大语言模型能准确识别大多数虚假标题(90%),但我们发现这些信息并不能显著提高参与者辨别标题准确性或分享准确新闻的能力。相比之下,查看人工生成的事实核查在这两种情况下都能增强辨别力。后续分析表明,人工智能事实核查器在特定情况下是有害的:它会降低对被其错误标记为虚假的真实标题的可信度,并增加对其不确定的虚假标题的可信度。从积极方面来看,人工智能事实核查信息会增加对正确标记为真实的标题的分享意愿。当参与者可以选择查看大语言模型的事实核查并选择这样做时,他们更有可能分享真假新闻,但只更有可能相信虚假标题。我们的研究结果突出了人工智能应用潜在危害的一个重要来源,并强调了制定政策以预防或减轻此类意外后果的迫切需求。