Suppr超能文献

一种用于尖峰神经网络的仿生神经编码器。

A biomimetic neural encoder for spiking neural network.

机构信息

Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.

Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA.

出版信息

Nat Commun. 2021 Apr 9;12(1):2143. doi: 10.1038/s41467-021-22332-8.

Abstract

Spiking neural networks (SNNs) promise to bridge the gap between artificial neural networks (ANNs) and biological neural networks (BNNs) by exploiting biologically plausible neurons that offer faster inference, lower energy expenditure, and event-driven information processing capabilities. However, implementation of SNNs in future neuromorphic hardware requires hardware encoders analogous to the sensory neurons, which convert external/internal stimulus into spike trains based on specific neural algorithm along with inherent stochasticity. Unfortunately, conventional solid-state transducers are inadequate for this purpose necessitating the development of neural encoders to serve the growing need of neuromorphic computing. Here, we demonstrate a biomimetic device based on a dual gated MoS field effect transistor (FET) capable of encoding analog signals into stochastic spike trains following various neural encoding algorithms such as rate-based encoding, spike timing-based encoding, and spike count-based encoding. Two important aspects of neural encoding, namely, dynamic range and encoding precision are also captured in our demonstration. Furthermore, the encoding energy was found to be as frugal as ≈1-5 pJ/spike. Finally, we show fast (≈200 timesteps) encoding of the MNIST data set using our biomimetic device followed by more than 91% accurate inference using a trained SNN.

摘要

尖峰神经网络(SNN)有望通过利用具有更快推理速度、更低能耗和事件驱动信息处理能力的生物上合理的神经元,在人工神经网络(ANN)和生物神经网络(BNN)之间架起桥梁。然而,SNN 在未来神经形态硬件中的实现需要类似于感觉神经元的硬件编码器,这些神经元根据特定的神经算法以及固有的随机性,将外部/内部刺激转换为尖峰序列。不幸的是,传统的固态换能器不足以满足这一要求,因此需要开发神经编码器来满足神经形态计算日益增长的需求。在这里,我们展示了一种基于双门控 MoS 场效应晶体管(FET)的仿生器件,该器件能够根据各种神经编码算法(如基于率的编码、基于尖峰时间的编码和基于尖峰计数的编码)将模拟信号编码为随机尖峰序列。我们的演示还捕捉到了神经编码的两个重要方面,即动态范围和编码精度。此外,编码能量被发现非常节俭,≈1-5 pJ/尖峰。最后,我们使用我们的仿生设备对 MNIST 数据集进行了快速(≈200 个时间步长)编码,然后使用经过训练的 SNN 进行了超过 91%的准确推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73af/8035177/85965f180d9c/41467_2021_22332_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验