Suppr超能文献

燕麦中磷感知SPX蛋白的全基因组鉴定与表达分析

Genome-wide identification and expression analysis of phosphate-sensing SPX proteins in oats.

作者信息

Du Yinke, Gong Jie, Dou Ziyi, Zheng Wei, Sun Renwei, Gao Shiqing

机构信息

College of Grassland Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China.

Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.

出版信息

Front Genet. 2024 Nov 20;15:1469704. doi: 10.3389/fgene.2024.1469704. eCollection 2024.

Abstract

Phosphorus is indispensable to plant growth and development. Soil phosphorus deficiency poses a substantial constraint on crop yield. SPXs play pivotal roles in phosphate transport and absorption in plants. Yet, the functions of SPXs of oat L.) under abiotic stresses remain unclear. In this study, we conducted a genome-wide analysis of 169 from hexaploid oat and five closely related plant species. All homologous were found to arise from duplication events and depict a strong purifying selection. Subcellular localization prediction revealed that AsSPXs were mainly located on the plasma membrane. Seventeen -acting elements, predominantly comprising light-, low temperature-, abscisic acid-, and drought-responsive elements, were dispersed in the promoter regions of . Analysis of -regulatory elements, protein-protein interaction networks, and qRT-PCR showed that are not solely involved in phosphorus starvation response but also in various stress responses. Notably, () exerted pivotal roles in conferring resistance against low phosphorus, salt, and ABA treatments. Our study aimed to explore important stress-resistant genes in oat. Our results could provide a basis for future studies on the evolution and functions of the gene family and a crucial foundation for comprehending how oat responds to environmental stresses.

摘要

磷对植物的生长发育不可或缺。土壤缺磷对作物产量构成了重大限制。SPXs在植物磷的运输和吸收中起关键作用。然而,燕麦中SPXs在非生物胁迫下的功能仍不清楚。在本研究中,我们对六倍体燕麦和五个近缘植物物种中的169个SPXs进行了全基因组分析。所有同源基因均发现源于复制事件,并呈现出强烈的纯化选择。亚细胞定位预测表明,AsSPXs主要位于质膜上。17个顺式作用元件,主要包括光、低温、脱落酸和干旱响应元件,分散在AsSPXs的启动子区域。对顺式调控元件、蛋白质-蛋白质相互作用网络和qRT-PCR的分析表明,AsSPXs不仅参与磷饥饿响应,还参与各种胁迫响应。值得注意的是,AsSPX3在赋予对低磷、盐和ABA处理的抗性中发挥了关键作用。我们的研究旨在探索燕麦中重要的抗逆基因。我们的结果可为今后研究AsSPX基因家族的进化和功能提供依据,并为理解燕麦如何响应环境胁迫提供重要基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19b2/11614802/bc1ad05eeaca/fgene-15-1469704-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验