Suppr超能文献

围绕单个量子发射器的闭环电子束诱导光谱学与纳米加工

Closed-loop electron-beam-induced spectroscopy and nanofabrication around individual quantum emitters.

作者信息

Almutlaq Jawaher, Kelley Kyle P, Choi Hyeongrak, Li Linsen, Lawrie Benjamin, Dyck Ondrej, Englund Dirk, Jesse Stephen

机构信息

Massachusetts Institute of Technology, Cambridge, MA, USA.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Nanophotonics. 2024 Mar 22;13(12):2251-2258. doi: 10.1515/nanoph-2023-0877. eCollection 2024 May.

Abstract

Color centers in diamond play a central role in the development of quantum photonic technologies, and their importance is only expected to grow in the near future. For many quantum applications, high collection efficiency from individual emitters is required, but the refractive index mismatch between diamond and air limits the optimal collection efficiency with conventional diamond device geometries. While different out-coupling methods with near-unity efficiency exist, many have yet to be realized due to current limitations in nanofabrication methods, especially for mechanically hard materials like diamond. Here, we leverage electron-beam-induced etching to modify Sn-implanted diamond quantum microchiplets containing integrated waveguides with a width and thickness of 280 nm and 200 nm, respectively. This approach allows for simultaneous high-resolution imaging and modification of the host matrix with an open geometry and direct writing. When coupled with the cathodoluminescence signal generated from the electron-emitter interactions, we can monitor the enhancement of the quantum emitters in real-time with nanoscale spatial resolution. The operando cathodoluminescence measurement and fabrication around single photon emitters demonstrated here provide a new foundation for the potential control of emitter-cavity interactions in integrated quantum photonics.

摘要

金刚石中的色心在量子光子技术的发展中起着核心作用,而且预计在不久的将来其重要性还会不断增加。对于许多量子应用而言,需要从单个发射器实现高收集效率,但金刚石与空气之间的折射率失配限制了采用传统金刚石器件几何结构时的最佳收集效率。虽然存在不同的近单位效率的外耦合方法,但由于目前纳米制造方法的限制,许多方法尚未实现,特别是对于像金刚石这样机械硬度高的材料。在此,我们利用电子束诱导蚀刻来修饰含有集成波导的Sn注入金刚石量子微芯片,这些波导的宽度和厚度分别为280纳米和200纳米。这种方法允许通过开放几何结构和直接写入对主体基质进行同时的高分辨率成像和修饰。当与电子发射器相互作用产生的阴极发光信号相结合时,我们可以以纳米级空间分辨率实时监测量子发射器的增强情况。本文展示的围绕单光子发射器的原位阴极发光测量和制造为集成量子光子学中发射器 - 腔相互作用的潜在控制提供了新的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e361/11501503/a75d4f03dd06/j_nanoph-2023-0877_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验