Suppr超能文献

囊性纤维化患者预后建模:预测高效模块化治疗前肺移植和生存情况的列线图。

Modeling cystic fibrosis patient prognosis: Nomograms to predict lung transplantation and survival prior to highly effective modular therapy.

作者信息

Piccorelli Annalisa V, Nick Jerry A

机构信息

Division of Biostatistics, Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of America.

Department of Medicine, National Jewish Health, Denver, CO, United States of America.

出版信息

PLoS One. 2024 Dec 5;19(12):e0292568. doi: 10.1371/journal.pone.0292568. eCollection 2024.

Abstract

BACKGROUND

The duration of time a person with cystic fibrosis (pwCF) spends on the lung transplant waitlist is dependent on waitlist and post-transplant survival probabilities and can extend up to 2 years. Understanding the characteristics involved with lung transplant and survival prognoses may help guide decision making by the patient, the referring CF Center and the transplant team.

METHODS

This study seeks to identify clinical predictors of lung transplant and survival of individuals with CF using 29,847 subjects from 2003-2014 entered in the Cystic Fibrosis Foundation Patient Registry (CFFPR).

RESULTS

Predictors significant (p ≤ 0.05) in the final logistic regression model predicting probability of lung transplant/death were: FEV1 (% predicted), BMI, age of diagnosis, age, number of pulmonary exacerbations, race, sex, CF-related diabetes (CFRD), corticosteroid use, infections with B. cepacia, P. aeruginosa, S. aureus, MRSA, pancreatic enzyme use, insurance status, and consecutive ibuprofen use for at least 4 years. The final Cox regression model predicting time to lung transplant identified these predictors as significant FEV1 (% predicted), BMI, age of diagnosis, age, number of pulmonary exacerbations, race, sex, CF-related diabetes (CFRD), corticosteroid use, infections with B. cepacia, P. aeruginosa, S. aureus, MRSA, pancreatic enzyme use, and consecutive ibuprofen use for at least 4 years. The concordance indices were 0.89 and 0.92, respectively.

CONCLUSIONS

The models are translated into nomograms to simplify investigation of how various characteristics relate to lung transplant and survival prognosis individuals with CF not receiving highly effective CFTR modulator therapy.

摘要

背景

囊性纤维化患者(pwCF)在肺移植等待名单上的时间长短取决于等待名单和移植后的生存概率,可能长达2年。了解肺移植及生存预后相关特征可能有助于指导患者、转诊的囊性纤维化中心和移植团队做出决策。

方法

本研究旨在利用2003年至2014年录入囊性纤维化基金会患者登记处(CFFPR)的29847名受试者,确定囊性纤维化患者肺移植及生存的临床预测因素。

结果

在预测肺移植/死亡概率的最终逻辑回归模型中具有显著意义(p≤0.05)的预测因素为:第1秒用力呼气容积(预测值百分比)、体重指数、诊断年龄、年龄、肺部加重发作次数、种族、性别、囊性纤维化相关糖尿病(CFRD)、皮质类固醇使用情况、洋葱伯克霍尔德菌、铜绿假单胞菌、金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌感染、胰酶使用情况、保险状况以及连续使用布洛芬至少4年。预测肺移植时间的最终Cox回归模型确定这些预测因素为具有显著意义的第1秒用力呼气容积(预测值百分比)、体重指数、诊断年龄、年龄、肺部加重发作次数、种族、性别、囊性纤维化相关糖尿病(CFRD)、皮质类固醇使用情况、洋葱伯克霍尔德菌、铜绿假单胞菌、金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌感染、胰酶使用情况以及连续使用布洛芬至少4年。一致性指数分别为0.89和0.92。

结论

这些模型被转化为列线图,以简化对未接受高效囊性纤维化跨膜传导调节因子调节剂治疗的囊性纤维化患者的各种特征与肺移植及生存预后之间关系的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfbf/11620394/c312d1d8db0a/pone.0292568.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验