Wimmer Michael, Pepicelli Alex, Volmer Ben, ElSayed Neven, Cunningham Andrew, Thomas Bruce H, Müller-Putz Gernot R, Veas Eduardo E
Know Center Research GmbH, Graz, Austria; Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
Wearable Computer Lab, University of South Australia, Adelaide, SA, Australia.
Comput Biol Med. 2025 Feb;185:109483. doi: 10.1016/j.compbiomed.2024.109483. Epub 2024 Dec 4.
Augmented Reality (AR) technologies enhance the real world by integrating contextual digital information about physical entities. However, inconsistencies between physical reality and digital augmentations, which may arise from errors in the visualized information or the user's mental context, can considerably impact user experience. This work characterizes the brain dynamics associated with processing incongruent information within an AR environment. To study these effects, we designed an interactive paradigm featuring the manipulation of a Rubik's cube serving as a physical referent. Congruent and incongruent information regarding the cube's current status was presented via symbolic (digits) and non-symbolic (graphs) stimuli, thus examining the impact of different means of data representation. The analysis of electroencephalographic signals from 19 participants revealed the presence of centro-parietal N400 and P600 components following the processing of incongruent information, with significantly increased latencies for non-symbolic stimuli. Additionally, we explored the feasibility of exploiting incongruency effects for brain-computer interfaces. Hence, we implemented decoders using linear discriminant analysis, support vector machines, and EEGNet, achieving comparable performances with all methods. Therefore, this work contributes to the design of adaptive AR systems by demonstrating that above-chance detection of incongruent information based on physiological signals is feasible. The successful decoding of incongruency-induced modulations can inform systems about the current mental state of users without making it explicit, aiming for more coherent and contextually appropriate AR interactions.
增强现实(AR)技术通过整合有关物理实体的上下文数字信息来增强现实世界。然而,物理现实与数字增强之间的不一致,可能源于可视化信息中的错误或用户的心理背景,会对用户体验产生重大影响。这项工作描述了与在AR环境中处理不一致信息相关的大脑动态。为了研究这些影响,我们设计了一种交互式范式,其特点是操纵一个作为物理参照的魔方。通过符号(数字)和非符号(图形)刺激呈现关于魔方当前状态的一致和不一致信息,从而检验不同数据表示方式的影响。对19名参与者的脑电图信号分析表明,在处理不一致信息后出现了中央顶叶N400和P600成分,非符号刺激的潜伏期显著增加。此外,我们探索了将不一致效应用于脑机接口的可行性。因此,我们使用线性判别分析、支持向量机和EEGNet实现了解码器,所有方法都取得了可比的性能。因此,这项工作通过证明基于生理信号对不一致信息进行高于机会水平的检测是可行的,为自适应AR系统的设计做出了贡献。对不一致诱导调制的成功解码可以在不明确告知系统的情况下,让系统了解用户当前的心理状态,旨在实现更连贯和上下文合适的AR交互。