Koutsouvelis Petros, Chybowski Bartlomiej, Gonzalez-Sulser Alfredo, Abdullateef Shima, Escudero Javier
Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom.
J Neural Eng. 2024 Dec 27;21(6). doi: 10.1088/1741-2552/ad9ad0.
. Accurate seizure prediction could prove critical for improving patient safety and quality of life in drug-resistant epilepsy. While deep learning-based approaches have shown promising performance using scalp electroencephalogram (EEG) signals, the incomplete understanding and variability of the preictal state imposes challenges in identifying the optimal preictal period (OPP) for labeling the EEG segments. This study introduces novel measures to capture model behavior under different preictal definitions and proposes a data-centric deep learning methodology to identify the OPP.. We trained a competent subject-specific CNN-Transformer model to detect preictal EEG segments using the open-access CHB-MIT dataset. To capture the temporal dynamics of the model's predictions, we fitted a sigmoidal curve to the model outputs obtained from uninterrupted multi-hour EEG recordings prior to seizure onset. From this fitted curve, we derived key performance measures reflecting the timing of predictions, including classifier convergence, average error, output stability, and the transition between interictal and preictal states. These measures were then combined to compute the Continuous Input-Output Performance Ratio, a novel metric designed to comprehensively compare model behavior across different preictal definitions (60, 45, 30, and 15 min) and suggest the OPP for each patient.The CNN-Transformer model achieved state-of-the-art performance (area under the curve of 99.35% and1-score of 97.46%) using minimally pre-processed EEG signals. The 60-minute preictal definition was associated with earlier seizure prediction, lower error in the preictal state, and reduced output fluctuations, leading to significantly higher CIOPR scores (< 0.001). Conventional accuracy-related metrics (sensitivity, specificity, F1-score) were less sensitive to varying preictal definitions and often discordant with CIOPR findings. Cross- and intra-patient heterogeneities in the prediction times were also observed, complicating the establishment of a global preictal interval.. The newly developed metrics demonstrate that varying the preictal period significantly impacts the timing of predictions in ways not captured by conventional accuracy-related metrics. Understanding this impact and the inter-seizure heterogeneities is essential for developing intelligent systems tailored to individual patient needs and for underlining practical limitations in detecting the preictal period in real-world clinical applications.
准确的癫痫发作预测对于提高耐药性癫痫患者的安全性和生活质量可能至关重要。虽然基于深度学习的方法使用头皮脑电图(EEG)信号已显示出有前景的性能,但发作前期状态的理解不完整和变异性给识别用于标记EEG片段的最佳发作前期(OPP)带来了挑战。本研究引入了新的措施来捕捉不同发作前期定义下的模型行为,并提出了一种以数据为中心的深度学习方法来识别OPP。我们使用公开可用的CHB-MIT数据集训练了一个适用于特定受试者的CNN-Transformer模型,以检测发作前期的EEG片段。为了捕捉模型预测的时间动态,我们对发作开始前连续多小时EEG记录获得的模型输出拟合了一条S形曲线。从这条拟合曲线中,我们得出了反映预测时间的关键性能指标,包括分类器收敛、平均误差、输出稳定性以及发作间期和发作前期状态之间的转变。然后将这些指标结合起来计算连续输入-输出性能比,这是一种旨在全面比较不同发作前期定义(60、45、30和15分钟)下模型行为并为每个患者建议OPP的新指标。使用最少预处理的EEG信号,CNN-Transformer模型实现了先进的性能(曲线下面积为99.35%,F1分数为97.46%)。60分钟的发作前期定义与更早的癫痫发作预测、发作前期更低的误差以及减少的输出波动相关,导致显著更高的CIOPR分数(<0.001)。传统的与准确性相关的指标(敏感性、特异性、F1分数)对不同的发作前期定义不太敏感,并且常常与CIOPR的结果不一致。还观察到预测时间在患者间和患者内的异质性,这使得建立一个全球发作前期间隔变得复杂。新开发的指标表明,改变发作前期会以传统与准确性相关的指标未捕捉到的方式显著影响预测时间。理解这种影响和发作间期的异质性对于开发针对个体患者需求的智能系统以及强调在实际临床应用中检测发作前期的实际局限性至关重要。