Janta Pannipa, Vimolmangkang Sornkanok
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Phyto Analytica Testing Laboratory, Leapdelab Co.,Ltd., Samut Prakan, 10130, Thailand.
J Cannabis Res. 2024 Dec 6;6(1):41. doi: 10.1186/s42238-024-00252-w.
Cannabis flower scent is one of the key characteristics of the cannabis plant. The diverse scents impact user experiences and offer medicinal benefits. These scents originate from volatile compounds, particularly terpenes and terpenoids. This study characterized the volatile profile of 19 different dried cannabis flowers using gas chromatography-mass spectrometry coupled with headspace-solid phase microextraction (HS-SPME-GC-MS). A total of 75 compounds were identified, including alcohols, aldehydes, benzenes, esters, ketone, monoterpenes, monoterpenoids, sesquiterpenes, and sesquiterpenoids. Cluster analysis was able to group the 19 cannabis cultivars into five clusters based on volatile chemotypes using chemometric techniques of hierarchical cluster analysis (HCA) and principal component analysis (PCA). Potential discriminant markers of each cultivar were then analyzed using a supervised partial least squares discriminant analysis (PLS-DA) verified through Variable Importance in Projection values (VIP), identifying twenty discriminant markers. In addition, the correlations among 75 volatile compounds were also obtained. The findings of this study provide a valuable database of single cannabis cultivars, useful for identifying individual strains and verifying their quality. Clustering the cultivars by volatile chemotype can be used for the classification of cannabis in the market. The results of this study are expected to be a starting point for further cannabis breeding programs to expand knowledge of this plant. Furthermore, the proposed method is applicable to other aroma plants in the future.
大麻花香是大麻植物的关键特征之一。其多样的气味影响着用户体验并具有药用价值。这些气味源自挥发性化合物,特别是萜类和类萜。本研究采用顶空固相微萃取-气相色谱-质谱联用技术(HS-SPME-GC-MS)对19种不同的干燥大麻花的挥发性成分进行了表征。共鉴定出75种化合物,包括醇类、醛类、苯类、酯类、酮类、单萜类、单萜类化合物、倍半萜类和倍半萜类化合物。利用层次聚类分析(HCA)和主成分分析(PCA)等化学计量技术,聚类分析能够根据挥发性化学类型将19个大麻品种分为5个聚类。然后使用通过投影变量重要性(VIP)验证的监督偏最小二乘判别分析(PLS-DA)分析每个品种的潜在判别标记,确定了20个判别标记。此外,还获得了75种挥发性化合物之间的相关性。本研究结果提供了一个有价值的单一大麻品种数据库,有助于识别单个菌株并验证其质量。按挥发性化学类型对品种进行聚类可用于市场上大麻的分类。本研究结果有望成为进一步大麻育种计划的起点,以扩展对这种植物的认识。此外,所提出的方法未来可应用于其他芳香植物。