Suppr超能文献

基于无标记非线性光学显微镜的实时三维组织学样成像

Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy.

作者信息

Sun Yi, You Sixian, Du Xiaoxi, Spaulding Allison, Liu Z George, Chaney Eric J, Spillman Darold R, Marjanovic Marina, Tu Haohua, Boppart Stephen A

机构信息

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Quant Imaging Med Surg. 2020 Nov;10(11):2177-2190. doi: 10.21037/qims-20-381.

Abstract

BACKGROUND

The current gold-standard formalin-fixed and paraffin-embedded (FFPE) histology typically requires several days for tissue fixing, embedding, sectioning, and staining to provide depth-resolved tissue feature visualization. During these time- and labor- intense processes, the tissue dynamics and three-dimensional structures undergo inevitable loss and distortion.

METHODS

A simultaneous label-free autofluorescence multiharmonic (SLAM) microscope is used to conduct and imaging of fresh human and rat tissues. Four nonlinear optical imaging modalities are integrated into this SLAM microscope, including second harmonic generation (SHG), two-photon fluorescence (2PF), third harmonic generation (THG), and three-photon fluorescence (3PF). By imaging fresh human and rat tissues without any tissue processing or staining, various biological tissue features are effectively visualized by one or multiple imaging modalities of the SLAM microscope. In particular, some of the most essential features in hematoxylin and eosin (H&E)-stained histology, such as collagen fibers and nuclei, are also present in the SLAM microscopy images with good contrast. Because nuclei are evident from negative contrast, the nuclei are segmented from the SLAM images using deep learning. Finally, a color-transforming algorithm is developed to convert the grey-scale images acquired by the SLAM microscope to the virtually H&E-stained histology-like images. The converted histology-like images are later compared with the FFPE histology at the same tissue site. In addition, the nuclear-to-cytoplasmic ratios (N/C ratios) of the cells in the SLAM image are quantified, which has diagnostic relevance for cancer.

RESULTS

Various histological correlations are identified with high similarities for the color-converted histology-like SLAM microscopy images. By applying the color transforming algorithm on real-time SLAM image sequences and 3D SLAM image stacks, we report, for the first time and to the best our knowledge, real-time 3D histology-like imaging. Furthermore, the quantified N/C ratio of the cells in the SLAM image are overlaid on the converted histology-like image as a new image contrast.

CONCLUSIONS

We demonstrated real-time 3D histology-like imaging and its future potential using SLAM microscopy aided by color remapping and deep-learning-based feature segmentation.

摘要

背景

当前的金标准福尔马林固定石蜡包埋(FFPE)组织学通常需要数天时间进行组织固定、包埋、切片和染色,以实现深度分辨的组织特征可视化。在这些耗时且费力的过程中,组织动态和三维结构不可避免地会出现损失和变形。

方法

使用同步无标记自发荧光多谐波(SLAM)显微镜对新鲜的人体和大鼠组织进行成像。该SLAM显微镜集成了四种非线性光学成像模式,包括二次谐波产生(SHG)、双光子荧光(2PF)、三次谐波产生(THG)和三光子荧光(3PF)。通过对未经任何组织处理或染色的新鲜人体和大鼠组织进行成像,SLAM显微镜的一种或多种成像模式有效地可视化了各种生物组织特征。特别是,苏木精和伊红(H&E)染色组织学中一些最基本的特征,如胶原纤维和细胞核,在SLAM显微镜图像中也具有良好的对比度。由于细胞核从负对比度中明显可见,因此使用深度学习从SLAM图像中分割细胞核。最后,开发了一种颜色转换算法,将SLAM显微镜获取的灰度图像转换为虚拟的H&E染色组织学样图像。随后将转换后的组织学样图像与同一组织部位的FFPE组织学进行比较。此外,对SLAM图像中细胞的核质比(N/C比)进行量化,这对癌症具有诊断相关性。

结果

对于颜色转换后的组织学样SLAM显微镜图像,发现了各种具有高度相似性的组织学相关性。通过将颜色转换算法应用于实时SLAM图像序列和3D SLAM图像堆栈,据我们所知,我们首次报告了实时3D组织学样成像。此外,SLAM图像中细胞的量化N/C比作为一种新的图像对比度叠加在转换后的组织学样图像上。

结论

我们展示了使用SLAM显微镜并借助颜色重映射和基于深度学习的特征分割实现实时3D组织学样成像及其未来潜力。

相似文献

引用本文的文献

3
To label or not: the need for validation in label-free imaging.标记与否:无标记成像中验证的必要性。
J Biomed Opt. 2024 Jun;29(Suppl 2):S22717. doi: 10.1117/1.JBO.29.S2.S22717. Epub 2024 Dec 20.

本文引用的文献

1
Label-free visualization and characterization of extracellular vesicles in breast cancer.无标记可视化和乳腺癌细胞外囊泡的特征分析。
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24012-24018. doi: 10.1073/pnas.1909243116. Epub 2019 Nov 15.
6
Slide-free virtual histochemistry (Part II): detection of field cancerization.无玻片虚拟组织化学(第二部分):场癌化的检测
Biomed Opt Express. 2018 Oct 5;9(11):5253-5268. doi: 10.1364/BOE.9.005253. eCollection 2018 Nov 1.
8
A review of artifacts in histopathology.组织病理学中的伪像综述。
J Oral Maxillofac Pathol. 2018 May-Aug;22(2):279. doi: 10.4103/jomfp.JOMFP_125_15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验