Tetzlaff Svenja K, Reyhan Ekin, Layer Nikolas, Bengtson C Peter, Heuer Alina, Schroers Julian, Faymonville Anton J, Langeroudi Atefeh Pourkhalili, Drewa Nina, Keifert Elijah, Wagner Julia, Soyka Stella J, Schubert Marc C, Sivapalan Nirosan, Pramatarov Rangel L, Buchert Verena, Wageringel Tim, Grabis Elena, Wißmann Niklas, Alhalabi Obada T, Botz Michael, Bojcevski Jovana, Campos Joaquín, Boztepe Berin, Scheck Jonas G, Conic Sascha Henry, Puschhof Maria C, Villa Giulia, Drexler Richard, Zghaibeh Yahya, Hausmann Fabian, Hänzelmann Sonja, Karreman Matthia A, Kurz Felix T, Schröter Manuel, Thier Marc, Suwala Abigail K, Forsberg-Nilsson Karin, Acuna Claudio, Saez-Rodriguez Julio, Abdollahi Amir, Sahm Felix, Breckwoldt Michael O, Suchorska Bogdana, Ricklefs Franz L, Heiland Dieter Henrik, Venkataramani Varun
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
Cell. 2025 Jan 23;188(2):390-411.e36. doi: 10.1016/j.cell.2024.11.002. Epub 2024 Dec 6.
Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma synapses have been shown to promote glioblastoma progression. However, a characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain, engaging in widespread functional communication, with cholinergic neurons driving glioblastoma invasion. We uncovered patient-specific and tumor-cell-state-dependent differences in synaptogenic gene expression associated with neuron-tumor connectivity and subsequent invasiveness. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to comprehensively characterize neuron-tumor networks and target glioblastoma.
胶质母细胞瘤是具有高治疗抗性的侵袭性脑肿瘤。已表明神经元-胶质瘤突触可促进胶质母细胞瘤进展。然而,由于缺乏技术手段,对与肿瘤相连的神经元的特征描述受到了阻碍。在此,我们采用基于狂犬病病毒的逆行追踪技术来研究和操控神经元-肿瘤网络。胶质母细胞瘤迅速整合到全脑的神经回路中,进行广泛的功能交流,胆碱能神经元驱动胶质母细胞瘤的侵袭。我们发现了与神经元-肿瘤连接性及后续侵袭性相关的突触生成基因表达中存在患者特异性和肿瘤细胞状态依赖性差异。重要的是,放疗通过增加神经元活动增强了神经元-肿瘤连接性。反过来,同时抑制神经元活动和进行放疗显示出增强的治疗效果,这表明神经元-胶质瘤突触在导致治疗抗性中发挥作用。最后,狂犬病介导的对与肿瘤相连的神经元的基因消融阻止了胶质母细胞瘤的进展,为攻克胶质母细胞瘤提供了一种病毒策略。总之,本研究提供了一个全面描述神经元-肿瘤网络并靶向胶质母细胞瘤的框架。