Suppr超能文献

使用深度学习模型对真菌-真菌相互作用进行自动分类。

Automatic classification of fungal-fungal interactions using deep leaning models.

作者信息

Mansourvar Marjan, Funk Jonathan, Petersen Søren Dalsgård, Tavakoli Sajad, Hoof Jakob Blæsbjerg, Corcoles David Llorente, Pittroff Sabrina M, Jelsbak Lars, Jensen Niels Bjerg, Ding Ling, Frandsen Rasmus John Normand

机构信息

Department of Biotechnology and Biomedicine (DTU Bioengineering) Technical University of Denmark, Søltofts Plads, Kgs. Lyngby 2800, Denmark.

出版信息

Comput Struct Biotechnol J. 2024 Nov 14;23:4222-4231. doi: 10.1016/j.csbj.2024.11.027. eCollection 2024 Dec.

Abstract

Fungi provide valuable solutions for diverse biotechnological applications, such as enzymes in the food industry, bioactive metabolites for healthcare, and biocontrol organisms in agriculture. Current workflows for identifying new biocontrol fungi often rely on subjective visual observations of strains' performance in microbe-microbe interaction studies, making the process time-consuming and difficult to reproduce. To overcome these challenges, we developed an AI-automated image classification approach using machine learning algorithm based on deep neural network. Our method focuses on analyzing standardized images of 96-well microtiter plates with solid medium for fungal-fungal challenge experiments. We used our model to categorize the outcome of interactions between the plant pathogen and individual isolates from a collection of 38,400 fungal strains. The authors trained multiple deep learning architectures and evaluated their performance. The results strongly support our approach, achieving a peak accuracy of 95.0 % with the DenseNet121 model and a maximum macro-averaged F1-Score of 93.1 across five folds. To the best of our knowledge, this paper introduces the first automated method for classifying fungal-fungal interactions using deep learning, which can easily be adapted for other fungal species.

摘要

真菌为各种生物技术应用提供了有价值的解决方案,例如食品工业中的酶、医疗保健中的生物活性代谢物以及农业中的生物防治生物体。当前鉴定新型生物防治真菌的工作流程通常依赖于在微生物 - 微生物相互作用研究中对菌株表现进行主观的视觉观察,这使得该过程既耗时又难以重复。为了克服这些挑战,我们基于深度神经网络开发了一种使用机器学习算法的人工智能自动化图像分类方法。我们的方法专注于分析用于真菌 - 真菌挑战实验的带有固体培养基的96孔微量滴定板的标准化图像。我们使用我们的模型对植物病原体与来自38400个真菌菌株集合中的单个分离株之间的相互作用结果进行分类。作者训练了多种深度学习架构并评估了它们的性能。结果有力地支持了我们的方法,使用DenseNet121模型达到了95.0%的峰值准确率,在五折交叉验证中最大宏平均F1分数为93.1。据我们所知,本文介绍了第一种使用深度学习对真菌 - 真菌相互作用进行分类的自动化方法,该方法可以轻松适用于其他真菌物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2ed/11626056/3c0f06a6cfbb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验