Louzada Andressa Cristina Sposato, Souza Pedro Henrique Araujo, Teivelis Marcelo Passos, Lemos Neto Pedro Alves, Nasser Felipe, Wolosker Nelson
Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
Einstein (Sao Paulo). 2024 Dec 6;22:eAO1058. doi: 10.31744/einstein_journal/2024AO1058. eCollection 2024.
This study tests a suitable model for training robot-assisted peripheral vascular interventions and examines the learning curves of endovascular surgeons with different levels of previous experience and main focus of work, analyzing procedure time, fluoroscopy time, use of contrast, and radiation emission.
Sixteen endovascular surgeons with different previous experience and training performed nine manual and 18 robotic angioplasties using the CorPath GRX platform on a 3D-printed life-size immersed infragenicular arterial phantom.
All participants considered the model reliable. When analyzing manual angioplasty outcomes, the juniors took significantly longer to perform angioplasties than the seniors (p=0.044). Among the seniors, interventionists were faster only on the first angioplasty (p=0.046). Analysis of the robotic angioplasty results showed that only one junior failed to cannulate one of the target arteries once. The total duration, fluoroscopy time, and radiation emission did not differ between juniors and seniors (p=0.095, p=0.60, and p=0.64, respectively). In addition, the learning curves for the maximum benefit required two attempts for procedure duration, one for fluoroscopy time, and three for radiation emission. There were no significant differences between senior vascular surgeons and interventionists. Among juniors, residents had a significantly lower procedure duration (p=0.042) and radiation emission (p=0.046) only for the first angioplasty.
The learning curves for robotic peripheral arterial interventions were short, with a plateau for the procedure and fluoroscopy times and radiation emission after the third attempt. We observed no differences in the learning curves in relation to previous experience or training.
本研究测试一种适用于训练机器人辅助外周血管介入手术的模型,并检查不同既往经验水平和主要工作重点的血管外科医生的学习曲线,分析手术时间、透视时间、造影剂使用情况和辐射剂量。
16名具有不同既往经验和训练背景的血管外科医生在一个3D打印的真人大小的膝下动脉浸入式模型上,使用CorPath GRX平台进行了9次手动血管成形术和18次机器人辅助血管成形术。
所有参与者都认为该模型可靠。在分析手动血管成形术结果时,初级医生进行血管成形术的时间明显长于高级医生(p = 0.044)。在高级医生中,介入医生仅在第一次血管成形术时速度更快(p = 0.046)。对机器人辅助血管成形术结果的分析表明,只有一名初级医生有一次未能成功穿刺其中一条目标动脉。初级医生和高级医生在总手术时长、透视时间和辐射剂量方面没有差异(分别为p = 0.095、p = 0.60和p = 0.64)。此外,为达到最大效益的学习曲线,手术时长需要两次尝试,透视时间需要一次尝试,辐射剂量需要三次尝试。高级血管外科医生和介入医生之间没有显著差异。在初级医生中,住院医生仅在第一次血管成形术时手术时长(p = 0.042)和辐射剂量(p = 0.046)明显更低。
机器人辅助外周动脉介入手术的学习曲线较短,第三次尝试后手术和透视时间以及辐射剂量趋于平稳。我们观察到学习曲线与既往经验或训练无关。