Suppr超能文献

不同种族衰老的代谢组学异质性:迈向健康衰老更近一步。

Metabolomic heterogeneity of ageing with ethnic diversity: a step closer to healthy ageing.

作者信息

Trivedi Dakshat, Hollywood Katherine A, Xu Yun, Wu Fredrick C W, Trivedi Drupad K, Goodacre Royston

机构信息

Centre for Metabolomics Research (CMR), Department of Biochemistry, Cell, and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

Clinical Metabolomics Unit (CMU), Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK.

出版信息

Metabolomics. 2024 Dec 15;21(1):9. doi: 10.1007/s11306-024-02199-8.

Abstract

INTRODUCTION

Outside of case-control settings, ethnicity specific changes in the human metabolome are understudied especially in community dwelling, ageing men. Characterising serum for age and ethnicity specific features can enable tailored therapeutics research and improve our understanding of the interplay between age, ethnicity, and metabolism in global populations.

OBJECTIVE

A metabolomics approach was adopted to profile serum metabolomes in middle-aged and elderly men of different ethnicities from the Northwest of England, UK.

METHODS

Serum samples from 572 men of White European (WE), South Asian (SA), and African-Caribbean (AC) ethnicities, ranging between 40 and 86 years were analysed. A combination of liquid chromatography (LC) and gas chromatography (GC) coupled to high-resolution mass spectrometry (MS) was used to generate the metabolomic profiles. Partial Least Squares Discriminant Analysis (PLS-DA) based classification models were built and validated using resampling via bootstrap analysis and permutation testing. Features were putatively annotated using public Human Metabolome Database (HMDB) and Golm Metabolite Database (GMD). Variable Importance in Projection (VIP) scores were used to determine features of interest, after which pathway enrichment analysis was performed.

RESULTS

Using profiles from our analysis we classify subjects by their ethnicity with an average correct classification rate (CCR) of 90.53% (LC-MS data) and 85.58% (GC-MS data). Similar classification by age (< 60 vs. ≥ 60 years) returned CCRs of 90.20% (LC-MS) and 71.13% (GC-MS). VIP scores driven feature selection revealed important compounds from putatively annotated lipids (subclasses including fatty acids and carboxylic acids, glycerophospholipids, steroids), organic acids, amino acid derivatives as key contributors to the classifications. Pathway enrichment analysis using these features revealed statistically significant perturbations in energy metabolism (TCA cycle), N-Glycan and unsaturated fatty acid biosynthesis linked pathways amongst others.

CONCLUSION

We report metabolic differences measured in serum that can be attributed to ethnicity and age in healthy population. These results strongly emphasise the need to consider confounding effects of inherent metabolic variations driven by ethnicity of participants in population-based metabolic profiling studies. Interpretation of energy metabolism, N-Glycan and fatty acid biosynthesis should be carefully decoupled from the underlying differences in ethnicity of participants.

摘要

引言

在病例对照研究之外,针对特定种族人群的人类代谢组变化研究较少,尤其是在社区居住的老年男性中。确定血清中与年龄和种族相关的特定特征,有助于开展针对性的治疗研究,并增进我们对全球人群中年龄、种族和代谢之间相互作用的理解。

目的

采用代谢组学方法对英国英格兰西北部不同种族的中年和老年男性血清代谢组进行分析。

方法

分析了572名年龄在40至86岁之间的白人(WE)、南亚人(SA)和非裔加勒比人(AC)男性的血清样本。采用液相色谱(LC)和气相色谱(GC)与高分辨率质谱(MS)联用的方法生成代谢组图谱。基于偏最小二乘判别分析(PLS-DA)构建分类模型,并通过自助重采样分析和置换检验进行验证。利用公共人类代谢组数据库(HMDB)和戈尔姆代谢物数据库(GMD)对特征进行推定注释。使用投影变量重要性(VIP)分数来确定感兴趣的特征,然后进行通路富集分析。

结果

利用我们分析得到的图谱,按种族对受试者进行分类,平均正确分类率(CCR)为90.53%(LC-MS数据)和85.58%(GC-MS数据)。按年龄(<60岁与≥60岁)进行类似分类时,CCR分别为90.20%(LC-MS)和71.13%(GC-MS)。基于VIP分数的特征选择揭示了推定注释的脂质(包括脂肪酸和羧酸、甘油磷脂、类固醇等亚类)、有机酸、氨基酸衍生物等重要化合物是分类的关键贡献因素。使用这些特征进行的通路富集分析显示,能量代谢(三羧酸循环)、N-聚糖和不饱和脂肪酸生物合成相关通路等存在统计学上的显著扰动。

结论

我们报告了在健康人群中血清代谢差异可归因于种族和年龄。这些结果强烈强调,在基于人群的代谢谱研究中,需要考虑参与者种族所驱动的固有代谢变异的混杂效应。能量代谢、N-聚糖和脂肪酸生物合成的解释应与参与者种族的潜在差异仔细区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a69/11646956/8e46fce8a0ec/11306_2024_2199_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验