Vornehm Marc, Chen Chong, Sultan Muhammad Ahmad, Arshad Syed Murtaza, Han Yuchi, Knoll Florian, Ahmad Rizwan
Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
ArXiv. 2024 Dec 5:arXiv:2412.04639v1.
Cardiovascular magnetic resonance imaging is a powerful diagnostic tool for assessing cardiac structure and function. Traditional breath-held imaging protocols, however, pose challenges for patients with arrhythmias or limited breath-holding capacity. We introduce Motion-Guided Deep Image prior (M-DIP), a novel unsupervised reconstruction framework for accelerated real-time cardiac MRI. M-DIP employs a spatial dictionary to synthesize a time-dependent template image, which is further refined using time-dependent deformation fields that model cardiac and respiratory motion. Unlike prior DIP-based methods, M-DIP simultaneously captures physiological motion and frame-to-frame content variations, making it applicable to a wide range of dynamic applications. We validate M-DIP using simulated MRXCAT cine phantom data as well as free-breathing real-time cine and single-shot late gadolinium enhancement data from clinical patients. Comparative analyses against state-of-the-art supervised and unsupervised approaches demonstrate M-DIP's performance and versatility. M-DIP achieved better image quality metrics on phantom data, as well as higher reader scores for in-vivo patient data.
心血管磁共振成像(CMR)是评估心脏结构和功能的强大诊断工具。然而,传统的屏气成像方案对心律失常或屏气能力有限的患者构成挑战。我们引入了运动引导深度图像先验(M-DIP),这是一种用于加速实时心脏磁共振成像的新型无监督重建框架。M-DIP使用空间字典合成随时间变化的模板图像,并使用模拟心脏和呼吸运动的随时间变化的变形场对其进行进一步细化。与基于深度图像先验(DIP)的先前方法不同,M-DIP同时捕捉生理运动和帧间内容变化,使其适用于广泛的动态应用。我们使用模拟的MRXCAT电影体模数据以及来自临床患者的自由呼吸实时电影和单次延迟钆增强数据对M-DIP进行了验证。与最先进的有监督和无监督方法的对比分析证明了M-DIP的性能和通用性。M-DIP在体模数据上实现了更好的图像质量指标,在体内患者数据上也获得了更高的阅片者评分。