Suppr超能文献

胸部X光6:使用卷积神经网络从胸部X光图像预测包括新冠肺炎在内的多种疾病

ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network.

作者信息

Nahiduzzaman Md, Islam Md Rabiul, Hassan Rakibul

机构信息

Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.

Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh.

出版信息

Expert Syst Appl. 2023 Jan;211:118576. doi: 10.1016/j.eswa.2022.118576. Epub 2022 Aug 27.

Abstract

In the last few decades, several epidemic diseases have been introduced. In some cases, doctors and medical physicians are facing difficulties in identifying these diseases correctly. A machine can perform some of these identification tasks more accurately than a human if it is trained correctly. With time, the number of medical data is increasing. A machine can analyze this medical data and extract knowledge from this data, which can help doctors and medical physicians. This study proposed a lightweight convolutional neural network (CNN) named ChestX-ray6 that automatically detects pneumonia, COVID19, cardiomegaly, lung opacity, and pleural from digital chest x-ray images. Here multiple databases have been combined, containing 9,514 chest x-ray images of normal and other five diseases. The lightweight ChestX-ray6 model achieved an accuracy of 80% for the detection of six diseases. The ChestX-ray6 model has been saved and used for binary classification of normal and pneumonia patients to reveal the model's generalization power. The pre-trained ChestX-ray6 model has achieved an accuracy and recall of 97.94% and 98% for binary classification, which outweighs the state-of-the-art (SOTA) models.

摘要

在过去几十年里,出现了几种流行病。在某些情况下,医生和医学专家在正确识别这些疾病方面面临困难。如果机器得到正确训练,它在执行某些识别任务时可以比人类更准确。随着时间的推移,医学数据的数量在增加。机器可以分析这些医学数据并从数据中提取知识,这对医生和医学专家会有所帮助。本研究提出了一种名为ChestX-ray6的轻量级卷积神经网络(CNN),它可以从数字化胸部X光图像中自动检测肺炎、新冠肺炎、心脏肥大、肺部混浊和胸腔积液。这里合并了多个数据库,包含9514张正常及其他五种疾病的胸部X光图像。轻量级的ChestX-ray6模型在检测六种疾病时准确率达到了80%。ChestX-ray6模型已被保存,并用于正常人和肺炎患者的二元分类,以揭示该模型的泛化能力。预训练的ChestX-ray6模型在二元分类中准确率和召回率分别达到了97.94%和98%,超过了当前的最优(SOTA)模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80da/9420006/f62a305e8c23/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验