Suppr超能文献

用于非接触式微芯片转移的激光诱导正向转移中气泡驱动的动力学

Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer.

作者信息

Kim DoYoung, Ryu Seong, Bae Sukang, Lee Min Wook, Kim Tae-Wook, Bae Jong-Seong, Park Jiwon, Lee Seoung-Ki

机构信息

School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju 55324, Republic of Korea.

出版信息

Nanomaterials (Basel). 2024 Nov 29;14(23):1926. doi: 10.3390/nano14231926.

Abstract

The rapid evolution of microelectronics and display technologies has driven the demand for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices shrink in size and increase in complexity, scalable and contactless methods for microscale placement are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering the precision and adaptability required for next-generation applications such as micro-light-emitting diodes (μ-LEDs). This study optimizes the LIFT process for the precise transfer of silicon microchips designed to mimic μ-LEDs. Critical parameters, including laser energy density, laser pulse width, and dynamic release layer (DRL) thickness are systematically adjusted to ensure controlled blister formation, a key factor for successful material transfer. The DRL, a polyimide-based photoreactive layer, undergoes photothermal decomposition under 355 nm laser irradiation, creating localized pressure that propels microchips onto the receiver substrate in a contactless manner. Using advanced techniques such as three-dimensional profilometry, X-ray photoelectron spectroscopy, and ultrafast imaging, this study evaluates the rupture dynamics of the DRL and the velocity of microchips during transfer. Optimization of the DRL thickness to 1 µm and a transfer velocity of 20 m s⁻ achieves a transfer yield of up to 97%, showcasing LIFT's potential in μ-LED manufacturing and semiconductor production.

摘要

微电子和显示技术的快速发展推动了对能够进行精确、高速微芯片转移的先进制造技术的需求。随着器件尺寸缩小和复杂度增加,用于微尺度放置的可扩展且非接触式方法至关重要。激光诱导正向转移(LIFT)已成为一种变革性解决方案,为诸如微发光二极管(μ-LED)等下一代应用提供所需的精度和适应性。本研究优化了LIFT工艺,以精确转移设计用于模拟μ-LED的硅微芯片。系统地调整包括激光能量密度、激光脉冲宽度和动态释放层(DRL)厚度在内的关键参数,以确保形成可控的气泡,这是成功进行材料转移的关键因素。DRL是一种基于聚酰亚胺的光反应层,在355 nm激光照射下会发生光热分解,产生局部压力,以非接触方式将微芯片推送到接收基板上。本研究使用三维轮廓测量、X射线光电子能谱和超快成像等先进技术,评估了DRL的破裂动力学以及微芯片在转移过程中的速度。将DRL厚度优化至1 µm且转移速度为20 m s⁻时,转移产率高达97%,展示了LIFT在μ-LED制造和半导体生产中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e3/11643012/92851f5b38f7/nanomaterials-14-01926-g001.jpg

相似文献

1
Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer.
Nanomaterials (Basel). 2024 Nov 29;14(23):1926. doi: 10.3390/nano14231926.
2
High-Yield and High-Accuracy Mass Transfer of Full-Color Micro-LEDs Using a Blister-Type Dynamic Release Polymer.
ACS Appl Mater Interfaces. 2025 May 14;17(19):28622-28631. doi: 10.1021/acsami.5c01531. Epub 2025 Apr 29.
4
20 µm Micro-LEDs Mass Transfer via Laser-Induced In Situ Nanoparticles Resonance Enhancement.
Small. 2024 Jul;20(27):e2309877. doi: 10.1002/smll.202309877. Epub 2024 Feb 8.
5
Transfer-printed, tandem microscale light-emitting diodes for full-color displays.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2023436118.
6
Blister-Actuated LIFT Printing for Multiparametric Functionalization of Paper-Like Biosensors.
Micromachines (Basel). 2019 Mar 28;10(4):221. doi: 10.3390/mi10040221.
8
Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.
ACS Appl Mater Interfaces. 2011 Feb;3(2):309-16. doi: 10.1021/am100943f. Epub 2011 Jan 24.
9
Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study.
Int J Bioprint. 2017 Jan 25;3(1):001. doi: 10.18063/IJB.2017.01.001. eCollection 2017.
10
Advanced Mechanical Transfer of Micro-LEDs Enabled by Structurally Modified Wide Sapphire Nanomembranes through Thermal Reflow of Photoresist.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42426-42434. doi: 10.1021/acsami.4c05958. Epub 2024 Aug 4.

本文引用的文献

1
Laser-induced forward transfer based laser bioprinting in biomedical applications.
Front Bioeng Biotechnol. 2023 Aug 21;11:1255782. doi: 10.3389/fbioe.2023.1255782. eCollection 2023.
2
Fluidic self-assembly for MicroLED displays by controlled viscosity.
Nature. 2023 Jul;619(7971):755-760. doi: 10.1038/s41586-023-06167-5. Epub 2023 Jul 12.
3
Microfabrication of functional polyimide films and microstructures for flexible MEMS applications.
Microsyst Nanoeng. 2023 Mar 21;9:31. doi: 10.1038/s41378-023-00503-5. eCollection 2023.
4
Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays.
Adv Mater. 2023 Oct;35(43):e2204947. doi: 10.1002/adma.202204947. Epub 2023 Feb 15.
6
Laser-induced Forward Transfer Hydrogel Printing: A Defined Route for Highly Controlled Process.
Int J Bioprint. 2020 Apr 23;6(3):271. doi: 10.18063/ijb.v6i3.271. eCollection 2020.
7
Blister-Actuated LIFT Printing for Multiparametric Functionalization of Paper-Like Biosensors.
Micromachines (Basel). 2019 Mar 28;10(4):221. doi: 10.3390/mi10040221.
8
Blister-based-laser-induced-forward-transfer: a non-contact, dry laser-based transfer method for nanomaterials.
Nanotechnology. 2018 Sep 21;29(38):385301. doi: 10.1088/1361-6528/aaceda. Epub 2018 Jun 25.
9
Roll-to-roll production of 30-inch graphene films for transparent electrodes.
Nat Nanotechnol. 2010 Aug;5(8):574-8. doi: 10.1038/nnano.2010.132. Epub 2010 Jun 20.
10
Mechanisms of laser-induced dissection and transport of histologic specimens.
Biophys J. 2007 Dec 15;93(12):4481-500. doi: 10.1529/biophysj.106.102277. Epub 2007 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验