Wu Jingjun, Wei Cong, Cui Hanxiao, Chen Fujia, Hu Kang, Li Ang, Pan Shilong, Yang Yihao, Ma Jun, Yang Zongyin, Zheng Wanguo, Zhu Rihong
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
Molecules. 2024 Nov 26;29(23):5580. doi: 10.3390/molecules29235580.
Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations. Functioning similarly to notch filters, GMRFs selectively block specific spectral bands while allowing others to pass, maximizing energy extraction from incident light and enhancing spectral encoding. Our design incorporates narrow band-stop filters, which are essential for accurate spectrum reconstruction, resulting in improved resolution and sensitivity. Our spectrometer delivers a spectral resolution of 0.8 nm over a range of 370-810 nm. It achieves sensitivity values that are more than ten times greater than those of conventional grating spectrometers during fluorescence spectroscopy of mouse jejunum. This enhanced sensitivity and resolution are particularly beneficial for chemical and biological applications, facilitating the detection of trace analytes in complex matrices. Furthermore, the spectrometer's compatibility with complementary metal oxide semiconductor (CMOS) technology enables scalable and cost-effective production, fostering broader adoption in chemical analysis, materials science, and biomedical research. This study underscores the transformative potential of the GMRF-based spectrometer as an innovative tool for advancing chemical and interdisciplinary analytical applications.
小型光谱仪通过实现精确的现场光谱分析,在环境监测、医疗诊断和工业质量控制等领域显著提升了实时分析能力。然而,在紧凑型设备中实现高灵敏度和光谱分辨率仍然是一项重大挑战,尤其是在检测低浓度分析物或对化学和分子分析至关重要的细微光谱变化时。本研究引入了一种采用导模共振滤波器(GMRF)的创新方法来解决这些限制。GMRF的功能类似于陷波滤波器,它选择性地阻挡特定光谱带,同时允许其他光谱带通过,从而最大限度地从入射光中提取能量并增强光谱编码。我们的设计采用了窄带阻滤波器,这对于精确的光谱重建至关重要,从而提高了分辨率和灵敏度。我们的光谱仪在370 - 810 nm范围内的光谱分辨率为0.8 nm。在小鼠空肠的荧光光谱分析中,它实现的灵敏度值比传统光栅光谱仪高出十多倍。这种增强的灵敏度和分辨率对于化学和生物应用特别有益,有助于在复杂基质中检测痕量分析物。此外,该光谱仪与互补金属氧化物半导体(CMOS)技术的兼容性实现了可扩展且经济高效的生产,促进了其在化学分析、材料科学和生物医学研究中的更广泛应用。本研究强调了基于GMRF的光谱仪作为推进化学和跨学科分析应用的创新工具的变革潜力。