Suppr超能文献

一种使用尿液炎症和氧化应激生物标志物预测女性下尿路功能障碍的决策树模型

A Decision Tree Model Using Urine Inflammatory and Oxidative Stress Biomarkers for Predicting Lower Urinary Tract Dysfunction in Females.

作者信息

Jiang Yuan-Hong, Jhang Jia-Fong, Wang Jen-Hung, Wu Ya-Hui, Kuo Hann-Chorng

机构信息

Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.

Department of Urology, School of Medicine, Tzu Chi University, Hualien 97002, Taiwan.

出版信息

Int J Mol Sci. 2024 Nov 29;25(23):12857. doi: 10.3390/ijms252312857.

Abstract

Lower urinary tract dysfunction (LUTD) was associated with bladder inflammation and tissue hypoxia with oxidative stress. The objective of the present study was to investigate the profiles of urine inflammatory and oxidative stress biomarkers in females with LUTD and to develop a urine biomarker-based decision tree model for the prediction. Urine samples were collected from 31 female patients with detrusor overactivity (DO), 45 with dysfunctional voiding (DV), and 114 with bladder pain syndrome (BPS). The targeted analytes included 15 inflammatory cytokines and 3 oxidative stress biomarkers (8-hydroxy-2-deoxyguanosin, 8-isoprostane, and total antioxidant capacity [TAC]). Different female LUTD groups had distinct urine inflammatory and oxidative stress biomarker profiles, including IL-1β, IL-2, IL-8, IL-10, eotaxin, CXCL10, MIP-1β, RANTES, TNFα, VEGF, NGF, BDNF, 8-isoprostane, and TAC. The urine biomarker-based decision tree, using IL-8, IL-10, CXCL10, TNFα, NGF, and BDNF as nodes, demonstrated an overall accuracy rate of 85.3%. The DO, DV, and BPS accuracy rates were 74.2%, 73.3%, and 93.0%, respectively. Internal validation revealed a similar overall accuracy rate. Random forest models supported the significance and importance of all selected nodes in this decision tree model. The inter-individual variations and the presence of extreme values in urine biomarker levels were the limitations of this study. In conclusion, urine inflammatory and oxidative stress biomarker profiles of different female LUTDs were different. This internally validated urine biomarker-based decision tree model predicted different female LUTDs with high accuracy.

摘要

下尿路功能障碍(LUTD)与膀胱炎症、组织缺氧及氧化应激相关。本研究的目的是调查LUTD女性患者尿液炎症和氧化应激生物标志物的特征,并建立基于尿液生物标志物的决策树模型用于预测。收集了31例逼尿肌过度活动(DO)女性患者、45例排尿功能障碍(DV)女性患者和114例膀胱疼痛综合征(BPS)女性患者的尿液样本。目标分析物包括15种炎性细胞因子和3种氧化应激生物标志物(8-羟基-2-脱氧鸟苷、8-异前列腺素和总抗氧化能力[TAC])。不同的女性LUTD组具有不同的尿液炎症和氧化应激生物标志物特征,包括白细胞介素-1β(IL-1β)、白细胞介素-2(IL-2)、白细胞介素-8(IL-8)、白细胞介素-10(IL-10)、嗜酸性粒细胞趋化因子、CXC趋化因子配体10(CXCL10)、巨噬细胞炎性蛋白-1β(MIP-1β)、调节激活正常T细胞表达和分泌因子(RANTES)、肿瘤坏死因子α(TNFα)、血管内皮生长因子(VEGF)、神经生长因子(NGF)、脑源性神经营养因子(BDNF)、8-异前列腺素和TAC。以IL-8、IL-10、CXCL10、TNFα、NGF和BDNF为节点的基于尿液生物标志物的决策树显示总体准确率为85.3%。DO、DV和BPS的准确率分别为74.2%、73.3%和93.0%。内部验证显示总体准确率相似。随机森林模型支持该决策树模型中所有选定节点的显著性和重要性。尿液生物标志物水平的个体间差异和极值的存在是本研究的局限性。总之,不同女性LUTD的尿液炎症和氧化应激生物标志物特征不同。这个经过内部验证的基于尿液生物标志物的决策树模型能够高精度地预测不同的女性LUTD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c31/11641083/1dceb120d308/ijms-25-12857-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验