Suppr超能文献

基于能量景观机器学习技术的精神分裂症功能连接生物标志物提取

Functional Connectivity Biomarker Extraction for Schizophrenia Based on Energy Landscape Machine Learning Techniques.

作者信息

Allen Janerra D, Varanasi Sravani, Han Fei, Hong L Elliot, Choa Fow-Sen

机构信息

Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

出版信息

Sensors (Basel). 2024 Dec 4;24(23):7742. doi: 10.3390/s24237742.

Abstract

Brain connectivity represents the functional organization of the brain, which is an important indicator for evaluating neuropsychiatric disorders and treatment effects. Schizophrenia is associated with impaired functional connectivity but characterizing the complex abnormality patterns has been challenging. In this work, we used resting-state functional magnetic resonance imaging (fMRI) data to measure functional connectivity between 55 schizophrenia patients and 63 healthy controls across 246 regions of interest (ROIs) and extracted the disease-related connectivity patterns using energy landscape (EL) analysis. EL analysis captures the complexity of brain function in schizophrenia by focusing on functional brain state stability and region-specific dynamics. Age, sex, and smoker demographics between patients and controls were not significantly different. However, significant patient and control differences were found for the brief psychiatric rating scale (BPRS), auditory perceptual trait and state (APTS), visual perceptual trait and state (VPTS), working memory score, and processing speed score. We found that the brains of individuals with schizophrenia have abnormal energy landscape patterns between the right and left rostral lingual gyrus, and between the left lateral and orbital area in 12/47 regions. The results demonstrate the potential of the proposed imaging analysis workflow to identify potential connectivity biomarkers by indexing specific clinical features in schizophrenia patients.

摘要

脑连接性代表了大脑的功能组织,是评估神经精神疾病及治疗效果的重要指标。精神分裂症与功能连接受损有关,但刻画复杂的异常模式具有挑战性。在这项研究中,我们使用静息态功能磁共振成像(fMRI)数据测量了55名精神分裂症患者和63名健康对照者在246个感兴趣区域(ROI)之间的功能连接性,并使用能量景观(EL)分析提取了与疾病相关的连接模式。EL分析通过关注脑功能状态稳定性和区域特异性动态变化来捕捉精神分裂症中脑功能的复杂性。患者和对照者之间的年龄、性别和吸烟人口统计学特征无显著差异。然而,在简明精神病评定量表(BPRS)、听觉感知特质和状态(APTS)、视觉感知特质和状态(VPTS)、工作记忆得分和处理速度得分方面,患者和对照者之间存在显著差异。我们发现,精神分裂症患者大脑在右侧和左侧喙侧舌回之间以及左侧外侧和眶区之间的12/47个区域存在异常的能量景观模式。结果表明,所提出的成像分析工作流程有潜力通过索引精神分裂症患者的特定临床特征来识别潜在的连接生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8054/11645077/a912d1bdecf3/sensors-24-07742-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验