Ye Jianhong, Zhao Zhiyong, Ghafourian Ehsan, Tajally AmirReza, Alkhazaleh Hamzah Ali, Lee Sangkeum
Head and Neck Surgery, The First Hospital of Jiaxing, Jiaxing, 314500, Zhejiang, China.
School of Engineering, Cardiff University, Cardiff, CF24 3TF, UK.
Heliyon. 2024 Jul 23;10(16):e35083. doi: 10.1016/j.heliyon.2024.e35083. eCollection 2024 Aug 30.
The use of MRI analysis for BTD and tumor type detection has considerable importance within the domain of machine vision. Numerous methodologies have been proposed to address this issue, and significant progress has been achieved in this domain via the use of deep learning (DL) approaches. While the majority of offered approaches using artificial neural networks (ANNs) and deep neural networks (DNNs) demonstrate satisfactory performance in Bayesian Tree Descent (BTD), none of these research studies can ensure the optimality of the employed learning model structure. Put simply, there is room for improvement in the efficiency of these learning models in BTD. This research introduces a novel approach for optimizing the configuration of Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) to address the BTD issue. The suggested approach employs Convolutional Neural Networks (CNN) for the purpose of segmenting brain MRIs. The model's configurable hyper-parameters are tuned using a genetic algorithm (GA). The Multi-Linear Principal Component Analysis (MPCA) is used to decrease the dimensionality of the segmented features in the pictures after they have been segmented. Ultimately, the segmentation procedure is executed using an Artificial Neural Network (ANN). In this artificial neural network (ANN), the genetic algorithm (GA) sets the ideal number of neurons in the hidden layer and the appropriate weight vector. The effectiveness of the suggested approach was assessed by utilizing the BRATS2014 and BTD20 databases. The results indicate that the proposed method can classify samples from these two databases with an average accuracy of 98.6 % and 99.1 %, respectively, which represents an accuracy improvement of at least 1.1 % over the preceding methods.
在机器视觉领域,使用磁共振成像(MRI)分析进行脑肿瘤下降(BTD)和肿瘤类型检测具有相当重要的意义。已经提出了许多方法来解决这个问题,并且通过使用深度学习(DL)方法在该领域取得了显著进展。虽然大多数使用人工神经网络(ANN)和深度神经网络(DNN)的方法在贝叶斯树下降(BTD)中表现出令人满意的性能,但这些研究都不能确保所采用的学习模型结构的最优性。简单地说,这些学习模型在BTD中的效率还有提升空间。本研究引入了一种优化卷积神经网络(CNN)和人工神经网络(ANN)配置的新方法来解决BTD问题。所建议的方法使用卷积神经网络(CNN)对脑部MRI进行分割。模型的可配置超参数使用遗传算法(GA)进行调整。多线性主成分分析(MPCA)用于在分割后的图像中降低分割特征的维度。最终,使用人工神经网络(ANN)执行分割过程。在这个人造神经网络(ANN)中,遗传算法(GA)设置隐藏层中神经元的理想数量和合适的权重向量。通过使用BRATS2014和BTD20数据库评估了所建议方法的有效性。结果表明,所提出的方法可以分别以98.6%和99.1%的平均准确率对这两个数据库中的样本进行分类,这比之前的方法至少提高了1.1%的准确率。