Suppr超能文献

LRMAHpan:一种使用基于Resnet和基于LSTM的神经网络进行多等位基因HLA呈现预测的新型工具。

LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks.

作者信息

Mi Xue, Li Shaohao, Ye Zheng, Dai Zhu, Ding Bo, Sun Bo, Shen Yang, Xiao Zhongdang

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Department of Obstetrics and Gynecoloty, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.

出版信息

Front Immunol. 2024 Nov 28;15:1478201. doi: 10.3389/fimmu.2024.1478201. eCollection 2024.

Abstract

INTRODUCTION

The identification of peptides eluted from HLA complexes by mass spectrometry (MS) can provide critical data for deep learning models of antigen presentation prediction and promote neoantigen vaccine design. A major challenge remains in determining which HLA allele eluted peptides correspond to.

METHODS

To address this, we present a tool for prediction of multiple allele (MA) presentation called LRMAHpan, which integrates LSTM network and ResNet_CA network for antigen processing and presentation prediction. We trained and tested the LRMAHpan BA (binding affinity) and the LRMAHpan AP (antigen processing) models using mass spectrometry data, subsequently combined them into the LRMAHpan PS (presentation score) model. Our approach is based on a novel pHLA encoding method that enables the integration of neoantigen prediction tasks into computer vision methods. This method aggregates MA data into a multichannel matrix and incorporates peptide sequences to efficiently capture binding signals.

RESULTS

LRMAHpan outperforms standard predictors such as NetMHCpan 4.1, MHCflurry 2.0, and TransPHLA in terms of positive predictive value (PPV) when applied to MA data. Additionally, it can accommodate peptides of variable lengths and predict HLA class I and II presentation. We also predicted neoantigens in a cohort of metastatic melanoma patients, identifying several shared neoantigens.

DISCUSSION

Our results demonstrate that LRMAHpan significantly improves the accuracy of antigen presentation predictions.

摘要

引言

通过质谱法(MS)鉴定从HLA复合物中洗脱的肽段可为抗原呈递预测的深度学习模型提供关键数据,并推动新抗原疫苗设计。确定洗脱的肽段对应的HLA等位基因仍然是一个主要挑战。

方法

为解决这一问题,我们提出了一种名为LRMAHpan的多等位基因呈递预测工具,该工具整合了长短期记忆网络(LSTM网络)和残差网络_通道注意力(ResNet_CA网络)用于抗原加工和呈递预测。我们使用质谱数据训练并测试了LRMAHpan BA(结合亲和力)模型和LRMAHpan AP(抗原加工)模型,随后将它们合并为LRMAHpan PS(呈递分数)模型。我们的方法基于一种新颖的pHLA编码方法,该方法能够将新抗原预测任务整合到计算机视觉方法中。此方法将多等位基因数据聚合为多通道矩阵并纳入肽序列,以有效捕获结合信号。

结果

当应用于多等位基因数据时,LRMAHpan在阳性预测值(PPV)方面优于标准预测器,如NetMHCpan 4.1、MHCflurry 2.0和TransPHLA。此外,它可以容纳可变长度的肽段,并预测HLA I类和II类呈递。我们还在一组转移性黑色素瘤患者中预测了新抗原,鉴定出了几种共享新抗原。

讨论

我们的数据表明LRMAHpan显著提高了抗原呈递预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd15/11634944/4c774c2d7fca/fimmu-15-1478201-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验