Suppr超能文献

使用差分引导滤波神经网络的高通量介观光学成像数据处理与解析

High-throughput mesoscopic optical imaging data processing and parsing using differential-guided filtered neural networks.

作者信息

Zhang Hong, Lu Zhikang, Gong Peicong, Zhang Shilong, Yang Xiaoquan, Li Xiangning, Feng Zhao, Li Anan, Xiao Chi

机构信息

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, 572025, China.

HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.

出版信息

Brain Inform. 2024 Dec 18;11(1):32. doi: 10.1186/s40708-024-00246-7.

Abstract

High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs. In this paper, we design an efficient deep differential guided filtering module (DDGF) by fusing multi-scale iterative differential guided filtering with deep learning, which effectively refines image details while mitigating background noise. Subsequently, by amalgamating DDGF with deep learning network, we propose a lightweight deep differential guided filtering segmentation network (DDGF-SegNet), which demonstrates robust performance on our dataset, achieving Dice of 0.92, Precision of 0.98, Recall of 0.91, and Jaccard index of 0.86. Building on the segmentation, we utilize connectivity analysis for ascertaining three-dimensional spatial orientation of each brain within the array. Furthermore, we streamline the entire processing workflow by developing an automated pipeline optimized for cluster-based message passing interface(MPI) parallel computation, which reduces the processing time for a mouse brain dataset to a mere 1.1 h, enhancing manual efficiency by 25 times and overall data processing efficiency by 2.4 times, paving the way for enhancing the efficiency of big data processing and parsing for high-throughput mesoscopic optical imaging techniques.

摘要

高通量介观光学成像技术极大地提高了从鼠脑中获取大量介观数据集的效率。受成像视野的限制,通过此类技术获得的图像条带通常需要进一步处理,如横断面拼接、伪影去除和信号区域裁剪,以满足后续分析的要求。然而,获取一批分辨率可达220TB的原始阵列鼠脑数据,并且在不连续处理中对外轮廓区域的裁剪仍依赖人工视觉观察,这消耗了大量的计算资源和人力成本。在本文中,我们通过将多尺度迭代微分引导滤波与深度学习相融合,设计了一种高效的深度微分引导滤波模块(DDGF),它能在减轻背景噪声的同时有效细化图像细节。随后,通过将DDGF与深度学习网络相结合,我们提出了一种轻量级深度微分引导滤波分割网络(DDGF-SegNet),其在我们的数据集上表现出强大的性能,Dice系数为0.92,精确率为0.98,召回率为0.91,杰卡德指数为0.86。在分割的基础上,我们利用连通性分析来确定阵列中每个脑的三维空间方向。此外,我们通过开发针对基于集群的消息传递接口(MPI)并行计算进行优化的自动化管道,简化了整个处理工作流程,将鼠脑数据集的处理时间缩短至仅1.1小时,将人工效率提高了25倍,整体数据处理效率提高了2.4倍,为提高高通量介观光学成像技术的大数据处理和解析效率铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d595/11655801/5b92809f3ea4/40708_2024_246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验