Suppr超能文献

理解市场对美国油籽生物柴油需求的中介反应中的不确定性:间接土地利用变化(ILUC)排放估计对全球生物能源模型(GLOBIOM)参数不确定性的敏感性。

Understanding Uncertainty in Market-Mediated Responses to US Oilseed Biodiesel Demand: Sensitivity of ILUC Emission Estimates to GLOBIOM Parametric Uncertainty.

作者信息

Escobar Neus, Valin Hugo, Frank Stefan, Galperin Diana, Wade Christopher M, Ringwald Leopold, Tanner Daniel, Hinkel Niklas, Havlík Petr, Baker Justin S, Lie Sharyn, Ramig Christopher

机构信息

Integrated Biosphere Futures (IBF) Research Group, Biodiversity and Natural Resources (BNR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg 2361, Austria.

Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, Building 1, Barrio Sarriena s/n, Leioa 48940, Spain.

出版信息

Environ Sci Technol. 2025 Jan 14;59(1):302-314. doi: 10.1021/acs.est.3c09944. Epub 2024 Dec 18.

Abstract

The life cycle greenhouse gas (GHG) emissions of biofuels depend on uncertain estimates of induced land use change (ILUC) and subsequent emissions from carbon stock changes. Demand for oilseed-based biofuels is associated with particularly complex market and supply chain dynamics, which must be considered. Using the global partial equilibrium model GLOBIOM, this study explores the uncertainty in market-mediated impacts and ILUC-related emissions from increasing demand for soybean biodiesel in the United States in the period 2020-2050. A one-at-a-time (OAT) analysis and a Monte Carlo (MC) analysis are performed to assess the sensitivity of modeled ILUC-GHG emissions intensities (gCOe/MJ) to varying key economic and biophysical model parameters. Additionally, the influence of the approach on the simulation of future ILUC effects is explored using two alternative ILUC-GHG metrics: a comparative-static approach for 2030 and a recursive-dynamic approach using model outputs through 2050. We find that projected ILUC-GHG values largely vary based on which vegetable oils replace diverted soybean oil, market responses to coproducts, and the carbon content of land converted for agricultural use. These are all, in turn, subject to decision uncertainty through the choice of the modeling approach and the time horizon considered for each ILUC-GHG metric. Given the longer simulation period, ILUC-GHG emission uncertainty ranges increase under the recursive-dynamic approach (42.4 ± 25.9 gCOe/MJ) compared to the comparative-static approach (40.8 ± 20.5 gCOe/MJ). The combination of MC analysis with other techniques such as Bayesian Additive Regression Trees (BART) is powerful for understanding model behavior and clarifying the sensitivity of market responses, ILUC, and associated GHG emissions to specific model parameters when simulated with global economic models. The BART reveals that biophysical parameters generate more linear ILUC-GHG responses to changes in assumed parameter values while changes in economic parameters lead to more nonlinear ILUC-GHG results as multiple effects at the interplay of food, feed, and fuel uses overlap. The choice of the recursive-dynamic metric allows capturing the longer-term evolution of ILUC while generating additional uncertainties derived from the baseline definition.

摘要

生物燃料生命周期中的温室气体(GHG)排放取决于对诱导土地利用变化(ILUC)以及随后碳储量变化所产生排放的不确定估计。对基于油籽的生物燃料的需求与特别复杂的市场和供应链动态相关,必须予以考虑。本研究使用全球局部均衡模型GLOBIOM,探讨了2020年至2050年美国大豆生物柴油需求增加所带来的市场介导影响和与ILUC相关排放的不确定性。进行了一次只改变一个因素(OAT)分析和蒙特卡洛(MC)分析,以评估模拟的ILUC - GHG排放强度(gCOe/MJ)对不同关键经济和生物物理模型参数的敏感性。此外,使用两种替代的ILUC - GHG指标探讨了该方法对未来ILUC效应模拟的影响:一种是2030年的比较静态方法,另一种是使用直至2050年的模型输出的递归动态方法。我们发现,预计的ILUC - GHG值在很大程度上取决于哪些植物油替代了被转用的大豆油、市场对副产品的反应以及转为农业用途土地的碳含量。而这些又都因建模方法的选择以及为每个ILUC - GHG指标所考虑的时间范围而面临决策不确定性。鉴于模拟期更长,与比较静态方法(40.8±20.5 gCOe/MJ)相比,递归动态方法下的ILUC - GHG排放不确定性范围有所增加(42.4±25.9 gCOe/MJ)。当与全球经济模型一起模拟时,MC分析与贝叶斯加法回归树(BART)等其他技术相结合,对于理解模型行为以及阐明市场反应、ILUC和相关GHG排放对特定模型参数的敏感性非常有效。BART显示,生物物理参数对假设参数值变化产生的ILUC - GHG响应更具线性,而经济参数的变化由于食品、饲料和燃料用途相互作用中的多种效应重叠,导致ILUC - GHG结果更具非线性。递归动态指标的选择能够捕捉ILUC的长期演变,同时产生源自基线定义的额外不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9944/11741104/11f8a1e1430f/es3c09944_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验