Suppr超能文献

一种用于预测胃癌全胃切除围手术期输血情况的机器学习改进新型列线图

A Machine Learning-Modified Novel Nomogram to Predict Perioperative Blood Transfusion of Total Gastrectomy for Gastric Cancer.

作者信息

Zhang Jiawen, Jiang Linhua, Zhu Xinguo

机构信息

Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Front Oncol. 2022 Apr 11;12:826760. doi: 10.3389/fonc.2022.826760. eCollection 2022.

Abstract

BACKGROUND

Perioperative blood transfusion reserves are limited, and the outcome of blood transfusion remains unclear. Therefore, it is important to prepare plans for perioperative blood transfusions. This study aimed to establish a risk assessment model to guide clinical patient management.

METHODS

This retrospective comparative study involving 513 patients who had total gastrectomy (TG) between January 2018 and January 2021 was conducted using propensity score matching (PSM). The influencing factors were explored by logistic regression, correlation analysis, and machine learning; then, a nomogram was established.

RESULTS

After assessment of the importance of factors through machine learning, blood loss, preoperative controlling nutritional status (CONUT), hemoglobin (Hb), and the triglyceride-glucose (TyG) index were considered as the modified transfusion-related factors. The modified model was not considered to be different from the original model in terms of performance, but is simpler. A nomogram was created, with a C-index of 0.834, and the decision curve analysis (DCA) demonstrated good clinical benefit.

CONCLUSIONS

A nomogram was established and modified with machine learning, which suggests the importance of the patient's integral condition. This emphasizes that caution should be exercised regarding transfusions, and, if necessary, preoperative nutritional interventions or delayed surgery should be implemented for safety.

摘要

背景

围手术期输血储备有限,输血的结果仍不明确。因此,制定围手术期输血计划很重要。本研究旨在建立一个风险评估模型,以指导临床患者管理。

方法

本回顾性比较研究纳入了2018年1月至2021年1月期间接受全胃切除术(TG)的513例患者,采用倾向评分匹配(PSM)方法。通过逻辑回归、相关分析和机器学习探索影响因素;然后,建立了列线图。

结果

通过机器学习评估因素的重要性后,失血、术前控制营养状况(CONUT)、血红蛋白(Hb)和甘油三酯-葡萄糖(TyG)指数被视为修正的输血相关因素。修正后的模型在性能方面与原模型无差异,但更简单。创建了一个列线图,C指数为0.834,决策曲线分析(DCA)显示出良好的临床效益。

结论

通过机器学习建立并修正了列线图,这表明患者整体状况的重要性。这强调了输血时应谨慎,必要时应实施术前营养干预或延迟手术以确保安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec57/9035891/20667c3ad31b/fonc-12-826760-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验