文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Shedding light on vascular imaging: the revolutionary role of nanotechnology.

作者信息

Zhang Peisen, Li Yao, Li Xiaoqi, Wang Yudong, Lin Hua, Zhang Ni, Li Wenyue, Jing Lihong, Jiao Mingxia, Luo Xiliang, Hou Yi

机构信息

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

J Nanobiotechnology. 2024 Dec 18;22(1):757. doi: 10.1186/s12951-024-03042-x.


DOI:10.1186/s12951-024-03042-x
PMID:39695727
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11657597/
Abstract

Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/31344c322dfc/12951_2024_3042_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/73abe647eaf5/12951_2024_3042_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/631badbb94b5/12951_2024_3042_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/c20e434f2956/12951_2024_3042_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/cd1ca0c768f2/12951_2024_3042_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/87ce6bcabac7/12951_2024_3042_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/5bc5ee3c9aa8/12951_2024_3042_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/96f30ad4e891/12951_2024_3042_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/6b0033efb97d/12951_2024_3042_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/6e5b5cdc4cb8/12951_2024_3042_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/c481da695695/12951_2024_3042_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/31344c322dfc/12951_2024_3042_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/73abe647eaf5/12951_2024_3042_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/631badbb94b5/12951_2024_3042_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/c20e434f2956/12951_2024_3042_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/cd1ca0c768f2/12951_2024_3042_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/87ce6bcabac7/12951_2024_3042_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/5bc5ee3c9aa8/12951_2024_3042_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/96f30ad4e891/12951_2024_3042_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/6b0033efb97d/12951_2024_3042_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/6e5b5cdc4cb8/12951_2024_3042_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/c481da695695/12951_2024_3042_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56b/11657597/31344c322dfc/12951_2024_3042_Fig11_HTML.jpg

相似文献

[1]
Shedding light on vascular imaging: the revolutionary role of nanotechnology.

J Nanobiotechnology. 2024-12-18

[2]
Use of blood pool agents with steady-state MRI to assess the vascular system.

J Magn Reson Imaging. 2017-6

[3]
The biological applications of near-infrared optical nanomaterials in atherosclerosis.

J Nanobiotechnology. 2024-8-12

[4]
Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment.

Nanoscale. 2024-12-5

[5]
Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes.

Arch Pharm Res. 2021-2

[6]
The capability of detecting small vessels beyond the conventional MRI sensitivity using iron-based contrast agent enhanced susceptibility weighted imaging.

NMR Biomed. 2020-5

[7]
Progress in ultrasmall ferrite nanoparticles enhanced magnetic resonance angiography.

J Mater Chem B. 2024-7-10

[8]
Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-7

[9]
Contrast-enhanced MR angiography for evaluation of vascular complications of the pancreatic transplant.

Radiographics. 2005

[10]
Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function.

Small. 2023-4

本文引用的文献

[1]
Shine and darkle the blood vessels: Multiparameter hypersensitive MR angiography for diagnosis of panvascular diseases.

Sci Adv. 2024-10-4

[2]
High-Resolution Magnetic Resonance Angiography of Tumor Vasculatures with an Interlocking Contrast Agent.

ACS Nano. 2024-9-17

[3]
Ultrahigh-Resolution Visualization of Vascular Heterogeneity in Brain Tumors via Magnetic Nanoparticles-Enhanced Susceptibility-Weighted Imaging.

ACS Nano. 2024-8-13

[4]
A Minimalist Iron Oxide Nanoprobe for the High-Resolution Depiction of Stroke by Susceptibility-Weighted Imaging.

Small. 2024-11

[5]
Amorphous Albumin Gadolinium-Based Nanoparticles for Ultrahigh-Resolution Magnetic Resonance Angiography.

ACS Appl Mater Interfaces. 2024-2-28

[6]
Bright, photostable and long-circulating NIR-II nanoparticles for whole-process monitoring and evaluation of renal transplantation.

Natl Sci Rev. 2023-11-8

[7]
Hypersensitive MR angiography based on interlocking stratagem for diagnosis of cardiac-cerebral vascular diseases.

Nat Commun. 2023-10-2

[8]
Evaluation of whole-brain oxygen metabolism in Alzheimer's disease using QSM and quantitative BOLD.

Neuroimage. 2023-11-15

[9]
Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy.

Nat Nanotechnol. 2024-1

[10]
Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues.

ACS Nano. 2023-9-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索